Download presentation
Presentation is loading. Please wait.
Published byAdam Miller Modified over 8 years ago
1
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics §1.6 Exponent Properties
2
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §1.5 → (Word) Problem Solving Any QUESTIONS About HomeWork §1.5 → HW-01 1.5 MTH 55
3
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 3 Bruce Mayer, PE Chabot College Mathematics Exponent PRODUCT Rule For any number a and any positive integers m and n, In other Words: To MULTIPLY powers with the same base, keep the base and ADD the exponents Exponent Base
4
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 4 Bruce Mayer, PE Chabot College Mathematics Quick Test of Product Rule Test
5
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 5 Bruce Mayer, PE Chabot College Mathematics Example Product Rule Multiply and simplify each of the following. (Here “simplify” means express the product as one base to a power whenever possible.) a) x 3 x 5 b) 6 2 6 7 6 3 c) (x + y) 6 (x + y) 9 d) (w 3 z 4 )(w 3 z 7 )
6
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 6 Bruce Mayer, PE Chabot College Mathematics Example Product Rule Solution a) x 3 x 5 = x 3+5 Adding exponents = x 8 Solution b) 6 2 6 7 6 3 = 6 2+7+3 = 6 12 Solution c) (x + y) 6 (x + y) 9 = (x + y) 6+9 = (x + y) 15 Solution d) (w 3 z 4 )(w 3 z 7 ) = w 3 z 4 w 3 z 7 = w 3 w 3 z 4 z 7 = w 6 z 11 Base is x Base is 6 Base is (x + y) TWO Bases: w & z
7
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 7 Bruce Mayer, PE Chabot College Mathematics Exponent QUOTIENT Rule For any nonzero number a and any positive integers m & n for which m > n, In other Words: To DIVIDE powers with the same base, SUBTRACT the exponent of the denominator from the exponent of the numerator
8
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 8 Bruce Mayer, PE Chabot College Mathematics Quick Test of Quotient Rule Test
9
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 9 Bruce Mayer, PE Chabot College Mathematics Example Quotient Rule Divide and simplify each of the following. (Here “simplify” means express the product as one base to a power whenever possible.) a)b) c)d)
10
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 10 Bruce Mayer, PE Chabot College Mathematics Example Quotient Rule Solution a) Solution b) Solution c) Solution d) Base is x Base is 8 Base is (6y) TWO Bases: r & t
11
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 11 Bruce Mayer, PE Chabot College Mathematics The Exponent Zero For any number a where a ≠ 0 In other Words: Any nonzero number raised to the 0 power is 1 Remember the base can be ANY Number –0.00073, 19.19, −86, 1000000, anything
12
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 12 Bruce Mayer, PE Chabot College Mathematics Example The Exponent Zero Simplify: a) 1245 0 b) (−3) 0 c) (4w) 0 d) (−1)8 0 e) −8 0 Solutions a)1245 0 = 1 b)(−3) 0 = 1 c)(4w) 0 = 1, for any w 0. d)(−1)8 0 = (−1)1 = −1 e)−8 0 is read “the opposite of 8 0 ” and is equivalent to (−1)8 0 : −8 0 = (−1)8 0 = (−1)1 = −1
13
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 13 Bruce Mayer, PE Chabot College Mathematics The POWER Rule For any number a and any whole numbers m and n In other Words: To RAISE a POWER to a POWER, MULTIPLY the exponents and leave the base unchanged
14
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 14 Bruce Mayer, PE Chabot College Mathematics Quick Test of Power Rule Test
15
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 15 Bruce Mayer, PE Chabot College Mathematics Example Power Rule Simplify: a) (x 3 ) 4 b) (4 2 ) 8 Solution a) (x 3 ) 4 = x 3 4 = x 12 Solution b) (4 2 ) 8 = 4 2 8 = 4 16 Base is x Base is 4
16
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 16 Bruce Mayer, PE Chabot College Mathematics Raising a Product to a Power For any numbers a and b and any whole number n, In other Words: To RAISE A PRODUCT to a POWER, RAISE Each Factor to that POWER
17
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 17 Bruce Mayer, PE Chabot College Mathematics Quick Test of Product to Power Test
18
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 18 Bruce Mayer, PE Chabot College Mathematics Example Product to Power Simplify: a) (3x) 4 b) (−2x 3 ) 2 c) (a 2 b 3 ) 7 (a 4 b 5 ) Solutions a)(3x) 4 = 3 4 x 4 = 81x 4 b)(−2x 3 ) 2 = (−2) 2 (x 3 ) 2 = (−1) 2 (2) 2 (x 3 ) 2 = 4x 6 c)(a 2 b 3 ) 7 (a 4 b 5 ) = (a 2 ) 7 (b 3 ) 7 a 4 b 5 = a 14 b 21 a 4 b 5 Multiplying exponents = a 18 b 26 Adding exponents
19
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 19 Bruce Mayer, PE Chabot College Mathematics Raising a Quotient to a Power For any real numbers a and b, b ≠ 0, and any whole number n In other Words: To Raise a Quotient to a power, raise BOTH the numerator & denominator to the power
20
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 20 Bruce Mayer, PE Chabot College Mathematics Quick Test of Quotient to Power Test
21
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 21 Bruce Mayer, PE Chabot College Mathematics Example Quotient to a Power Simplify: a) b) c) Solution a) Solution b) Solution c)
22
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 22 Bruce Mayer, PE Chabot College Mathematics Negative Exponents Integers as Negative Exponents
23
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 23 Bruce Mayer, PE Chabot College Mathematics Negative Exponents For any real number a that is nonzero and any integer n The numbers a −n and a n are thus RECIPROCALS of each other
24
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 24 Bruce Mayer, PE Chabot College Mathematics Example Negative Exponents Express using POSITIVE exponents, and, if possible, simplify. a) m –5 b) 5 –2 c) (−4) −2 d) xy –1 SOLUTION a) m –5 = b) 5 –2 =
25
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 25 Bruce Mayer, PE Chabot College Mathematics Example Negative Exponents Express using POSITIVE exponents, and, if possible, simplify. a) m –5 b) 5 –2 c) (−4) −2 d) xy −1 SOLUTION c) (−4) −2 = d) xy –1 = Remember PEMDAS
26
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 26 Bruce Mayer, PE Chabot College Mathematics More Examples Simplify. Do NOT use NEGATIVE exponents in the answer. a) b) (x 4 ) 3 c) (3a 2 b 4 ) 3 d)e) f) Solution a)
27
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 27 Bruce Mayer, PE Chabot College Mathematics More Examples Solution b) (x −4 ) −3 = x (−4)(−3) = x 12 c) (3a 2 b −4 ) 3 = 3 3 (a 2 ) 3 (b −4 ) 3 = 27 a 6 b −12 = d) e) f)
28
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 28 Bruce Mayer, PE Chabot College Mathematics Factors & Negative Exponents For any nonzero real numbers a and b and any integers m and n A factor can be moved to the other side of the fraction bar if the sign of the exponent is changed
29
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 29 Bruce Mayer, PE Chabot College Mathematics Examples Flippers Simplify SOLUTION We can move the negative factors to the other side of the fraction bar if we change the sign of each exponent.
30
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 30 Bruce Mayer, PE Chabot College Mathematics Reciprocals & Negative Exponents For any nonzero real numbers a and b and any integer n Any base to a power is equal to the reciprocal of the base raised to the opposite power
31
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 31 Bruce Mayer, PE Chabot College Mathematics Examples Flippers Simplify SOLUTION
32
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 32 Bruce Mayer, PE Chabot College Mathematics Summary – Exponent Properties 1 as an exponenta 1 = a 0 as an exponenta 0 = 1 Negative Exponents (flippers) The Product Rule The Quotient Rule The Power Rule(a m ) n = a mn The Product to a Power Rule (ab) n = a n b n The Quotient to a Power Rule This summary assumes that no denominators are 0 and that 00 00 is not considered. For any integers m and n
33
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 33 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §1.6 Exercise Set 14, 24, 52, 70, 84, 92, 112, 130 Base & Exponent → Which is Which?
34
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 34 Bruce Mayer, PE Chabot College Mathematics All Done for Today Astronomical Unit (AU)
35
BMayer@ChabotCollege.edu MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 35 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics Appendix –
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.