Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up Evaluate. 1. 100(1.08) 20 2. 100(0.95) 25 3. 100(1 – 0.02) 10 4. 100(1 + 0.08) –10 ≈ 466.1 ≈ 27.74 ≈ 81.71 ≈ 46.32.

Similar presentations


Presentation on theme: "Warm Up Evaluate. 1. 100(1.08) 20 2. 100(0.95) 25 3. 100(1 – 0.02) 10 4. 100(1 + 0.08) –10 ≈ 466.1 ≈ 27.74 ≈ 81.71 ≈ 46.32."— Presentation transcript:

1 Warm Up Evaluate. 1. 100(1.08) 20 2. 100(0.95) 25 3. 100(1 – 0.02) 10 4. 100(1 + 0.08) –10 ≈ 466.1 ≈ 27.74 ≈ 81.71 ≈ 46.32

2 Write and evaluate exponential expressions to model growth and decay situations. Objective

3 exponential function base asymptote exponential growth exponential decay Vocabulary

4 Moore’s law, a rule used in the computer industry, states that the number of transistors per integrated circuit (the processing power) doubles every year. Beginning in the early days of integrated circuits, the growth in capacity may be approximated by this table.

5 Growth that doubles every year can be modeled by using a function with a variable as an exponent. This function is known as an exponential function. The parent exponential function is f(x) = b x, where the base b is a constant and the exponent x is the independent variable.

6 The graph of the parent function f(x) = 2 x is shown. The domain is all real numbers and the range is {y|y > 0}.

7 Notice as the x-values decrease, the graph of the function gets closer and closer to the x-axis. The function never reaches the x-axis because the value of 2 x cannot be zero. In this case, the x-axis is an asymptote. An asymptote is a line that a graphed function approaches as the value of x gets very large or very small.

8 A function of the form f(x) = ab x, with a > 0 and b > 1, is an exponential growth function, which increases as x increases. When 0 < b < 1, the function is called an exponential decay function, which decreases as x increases.

9 Negative exponents indicate a reciprocal. For example: Remember! In the function y = b x, y is a function of x because the value of y depends on the value of x. Remember!

10 Tell whether the function shows growth or decay. Then graph. Example 1A: Graphing Exponential Functions Step 1 Find the value of the base. The base,,is less than 1. This is an exponential decay function.

11 Example 1A Continued Step 2 Graph the function by using a table of values. x024681012 f(x)105.63.21.81.00.60.3

12 Tell whether the function shows growth or decay. Then graph. Example 1B: Graphing Exponential Functions Step 1 Find the value of the base. g(x) = 100(1.05) x The base, 1.05, is greater than 1. This is an exponential growth function. g(x) = 100(1.05) x

13 Example 1B Continued Step 2 Graph the function by using a graphing calculator.

14 Tell whether the function p(x) = 5(1.2 x ) shows growth or decay. Then graph. Step 1 Find the value of the base. Check It Out! Example 1 p(x) = 5(1.2 x ) The base, 1.2, is greater than 1. This is an exponential growth function.

15 Step 2 Graph the function by using a table of values. x–12–8–404810 f(x)0.561.22.4510.421.530.9 Check It Out! Example 1 Continued

16 You can model growth or decay by a constant percent increase or decrease with the following formula: In the formula, the base of the exponential expression, 1 + r, is called the growth factor. Similarly, 1 – r is the decay factor.

17 Clara invests $5000 in an account that pays 6.25% interest per year. After how many years will her investment be worth $10,000? Example 2: Economics Application Step 1 Write a function to model the growth in value of her investment. f(t) = a(1 + r) t Exponential growth function. Substitute 5000 for a and 0.0625 for r. f(t) = 5000(1 + 0.0625) t f(t) = 5000(1.0625) t Simplify.

18 Example 2 Continued Step 2 When graphing exponential functions in an appropriate domain, you may need to adjust the range a few times to show the key points of the function. Step 3 Use the graph to predict when the value of the investment will reach $10,000. Use the feature to find the t-value where f(t) ≈ 10,000.

19 Example 2 Continued Step 3 Use the graph to predict when the value of the investment will reach $10,000. Use the feature to find the t-value where f(t) ≈ 10,000. The function value is approximately 10,000 when t ≈ 11.43 The investment will be worth $10,000 about 11.43 years after it was purchased.

20 In 1981, the Australian humpback whale population was 350 and increased at a rate of 14% each year since then. Write a function to model population growth. Use a graph to predict when the population will reach 20,000. P(t) = a(1 + r) t Substitute 350 for a and 0.14 for r. P(t) = 350(1 + 0.14) t P(t) = 350(1.14) t Simplify. Exponential growth function. Check It Out! Example 2

21 Graph the function. Use to find when the population will reach 20,000. It will take about 31 years for the population to reach 20,000. Check It Out! Example 2 Continued

22 Homework! Holt Chapter 7 Section 1 Page 493-495 #1-17, 21, 22

23

24

25

26


Download ppt "Warm Up Evaluate. 1. 100(1.08) 20 2. 100(0.95) 25 3. 100(1 – 0.02) 10 4. 100(1 + 0.08) –10 ≈ 466.1 ≈ 27.74 ≈ 81.71 ≈ 46.32."

Similar presentations


Ads by Google