Download presentation
Presentation is loading. Please wait.
Published byConstance Johnson Modified over 8 years ago
1
Geometric Sequences, Exponential Equations, Exponential Growth and Decay
2
Consider the table below… What is going on in the table? Adding 4 each time This is a linear function! y = 4x - 1 XY 13 27 311 415
3
Consider the table below… What is going on in the table? Multiplying by 3 each time This is an exponential function! y = 3 x XY 01 13 29 327
4
Exponential functions have a pattern of multiplying... like the table you’ve just seen. Let’s look at a few more patterns… 2, 8, 32, 128,…. What is the pattern? Multiplying by 4 0.45, 0.9, 1.8, 3.6,… What is the pattern? Multiplying by 2 8, 20, 50, 125,… What is the pattern? Multiplying by 2.5 or 2 ½
5
Linear is adding/subtracting Adding patterns are called arithmetic 12, 8, 4, 0….What’s the pattern? Subtracting 4 Exponential is multiplying Multiplying patterns are called geometric 2, 14, 98, 686…What’s the pattern? Multiplying by 7
6
XY 01 15 225 3125 Look at the table. What is the pattern? Is it linear or exponential? It is exponential. The pattern is multiplying by 5. How would you write an equation to represent the table? Let’s look at the equation for exponential functions.
7
The equation to make an exponential function is as follows y = a * b x a is where the graph crosses the y axis (the y intercept) b is by what number you are constantly multiplying Look at the table again. See if you can find the values for a and b. What do you think they are? XY 01 15 225 3125
8
That’s right! a is where it crosses the y-axis so in this case when x = 0, it crosses at 1. b is what you are constantly multiplying by and that number is 5. So the equation is y = 1 * 5 x or y = 5 x XY 01 15 225 3125
9
Take a minute and type the equation you just formulated into your calculator. What does the shape of the graph look like? If I gave you a choice of saying it was either exponential growth or exponential decay, which one would you tell me it was and why? It is exponential growth because the graph goes up.
10
XY -23/4 1 ½ 03 16 212 324 Look at the table. What is the pattern? Is it linear or exponential? It is exponential. The pattern is multiplying by 2. What is the a? Remember that the a is where it crosses the y-axis at x=0. What is the b? That is what you are multiplying by each time. y = 3 * 2 x Is it exponential growth or decay? Growth!
11
XY -21/9 1/3 01 13 29 327 Look at the table. What is the pattern? Is it linear or exponential? It is exponential. The pattern is multiplying by 3. What is the a? Remember that the a is where it crosses the y-axis at x=0. What is the b? That is what you are multiplying by each time. y = 1 * 3 x or y = 3 x Is it exponential growth or decay? Growth!
12
XY -24 2 01 1.5 2.25 3.125 Look at the table. What is the pattern? Is it linear or exponential? It is exponential. The pattern is multiplying by ½. What is the a? Remember that the a is where it crosses the y-axis at x=0. What is the b? That is what you are multiplying by each time. y = 1 * ½ x or y = ½ x Is it exponential growth or decay? Decay! If your b is less that one, it’s decay! The graph goes down!
13
Linear Functions Pattern is add or subtract (arithmetic). Graph is a line. Has a slope and a y- intercept. y = mx + b Exponential Functions Pattern is multiplying (geometric). Graph is a weird curve either going up or down. Up – Growth Down – Decay Has a slope (kind of) and a y – intercept. y = a * b x
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.