Presentation is loading. Please wait.

Presentation is loading. Please wait.

Network Layer4-1 Chapter 4: Network Layer Chapter goals: r Understand principles behind network layer services: m Routing (path selection) m dealing with.

Similar presentations


Presentation on theme: "Network Layer4-1 Chapter 4: Network Layer Chapter goals: r Understand principles behind network layer services: m Routing (path selection) m dealing with."— Presentation transcript:

1 Network Layer4-1 Chapter 4: Network Layer Chapter goals: r Understand principles behind network layer services: m Routing (path selection) m dealing with scale m how a router works m advanced topics: IPv6, mobility r instantiation and implementation in the Internet

2 Network Layer4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing

3 Network Layer4-3 Network layer functions r transport packet from sending to receiving hosts r network layer protocols in every host, router three important functions: r path determination: route taken by packets from source to dest. Routing algorithms r forwarding: move packets from router’s input to appropriate router output r call setup: some network architectures require router call setup along path before data flows network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical application transport network data link physical

4 Network Layer4-4 1 2 3 0111 value in arriving packet’s header routing algorithm local forwarding table header value output link 0100 0101 0111 1001 32213221 Interplay between routing and forwarding routing algorithm determines end-end-path through network forwarding table determines local forwarding at this router

5 Network Layer4-5 Connection setup r 3 rd important function in some network architectures: m ATM, frame relay, X.25 r Before datagrams flow, two hosts and intervening routers establish virtual connection m Routers get involved r Network and transport layer service: m Network: between two hosts m Transport: between two processes

6 Network Layer4-6 Network service model Q: What service model for “channel” transporting packets from sender to receiver? r guaranteed bandwidth? r preservation of inter-packet timing (no jitter)? r loss-free delivery? r in-order delivery? r congestion feedback to sender?

7 Network Layer4-7 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing

8 Network Layer 4-8 Connection, connection-less service  datagram network provides network-layer connectionless service  Internet uses this  virtual-circuit network provides network-layer connection service  ATM uses this

9 Network Layer 4-9 Virtual circuits r call setup, teardown for each call before data can flow r each packet carries VC identifier (not destination host address) r every router on source-dest path maintains “state” for each passing connection r link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service) “source-to-dest path behaves much like telephone circuit” m performance-wise m network actions along source-to-dest path

10 Network Layer 4-10 VC implementation a VC consists of: 1. path from source to destination 2. VC numbers, one number for each link along path 3. entries in forwarding tables in routers along path  packet belonging to VC carries VC number (rather than dest address)  VC number can be changed on each link.  new VC number comes from forwarding table

11 Network Layer 4-11 VC forwarding table 12 22 32 1 2 3 VC number interface number Incoming interface Incoming VC # Outgoing interface Outgoing VC # 1 12 3 22 2 63 1 18 3 7 2 17 1 97 3 87 … … forwarding table in northwest router: VC routers maintain connection state information!

12 Network Layer 4-12 application transport network data link physical Virtual circuits: signaling protocols r used to setup, maintain teardown VC r used in ATM, frame-relay, X.25 r not used in today’s Internet 1. initiate call 2. incoming call 3. accept call 4. call connected 5. data flow begins 6. receive data application transport network data link physical

13 Network Layer 4-13 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection” r packets forwarded using destination host address 1. send datagrams application transport network data link physical application transport network data link physical 2. receive datagrams

14 Network Layer 4-14 1 2 3 Datagram forwarding table IP destination address in arriving packet’s header routing algorithm local forwarding table dest address output link address-range 1 address-range 2 address-range 3 address-range 4 32213221 4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)

15 Network Layer 4-15 Destination Address Range 11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111 11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111 11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111 otherwise Link Interface 0 1 2 3 Q: but what happens if ranges don’t divide up so nicely? Datagram forwarding table

16 Network Layer 4-16 Longest prefix matching Destination Address Range 11001000 00010111 00010*** ********* 11001000 00010111 00011000 ********* 11001000 00010111 00011*** ********* otherwise DA: 11001000 00010111 00011000 10101010 examples: DA: 11001000 00010111 00010110 10100001 which interface? when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address. longest prefix matching Link interface 0 1 2 3

17 Network Layer 4-17 Datagram or VC network: why? Internet (datagram) r data exchange among computers m “elastic” service, no strict timing req. r many link types m different characteristics m uniform service difficult r “smart” end systems (computers) m can adapt, perform control, error recovery m simple inside network, complexity at “edge” r Scalable ATM (VC) r evolved from telephony r human conversation: m strict timing, reliability requirements m need for guaranteed service r “dumb” end systems m telephones m complexity inside network

18 Network Layer4-18 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing

19 Network Layer4-19 Router Architecture Overview Two key router functions: r run routing algorithms/protocol (RIP, OSPF, BGP) r forwarding datagrams from incoming to outgoing link

20 Network Layer4-20 Input Port Functions Decentralized switching: r given datagram dest., lookup output port using forwarding table in input port memory r goal: complete input port processing at ‘line speed’ r queuing: if datagrams arrive faster than forwarding rate into switch fabric Physical layer: bit-level reception Data link layer: e.g., Ethernet see chapter 5

21 Network Layer4-21 Three types of switching fabrics

22 Network Layer4-22 Switching Via Memory First generation routers: r traditional computers with switching under direct control of CPU r packet copied to system’s memory r speed limited by memory bandwidth (2 bus crossings per datagram) Input Port Output Port Memory System Bus

23 Network Layer4-23 Switching Via a Bus r datagram from input port memory to output port memory via a shared bus r bus contention: switching speed limited by bus bandwidth m Only one packet can be on bus at any time r 1 Gbps bus, Cisco 1900: sufficient speed for access and enterprise routers (not regional or backbone)

24 Network Layer4-24 Switching Via An Interconnection Network r overcome bus bandwidth limitations r Can pass multiple packets at the same time r Cisco 12000: switches Gbps through the interconnection network

25 Network Layer4-25 Output Ports r Buffering required when datagrams arrive from fabric faster than the transmission rate r Scheduling discipline chooses among queued datagrams for transmission

26 Network Layer4-26 Output port queueing r buffering when arrival rate via switch exceeds output line speed r queueing (delay) and loss due to output port buffer overflow!

27 Network Layer4-27 Input Port Queuing r Fabric slower than input ports combined -> queueing may occur at input queues r Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward r queueing delay and loss due to input buffer overflow!

28 Network Layer4-28 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing

29 Network Layer4-29 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing

30 Network Layer4-30 IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Header checksum time to live 32 bit source IP address IP protocol version Number (4) header length (4) (words) max number remaining hops (decremented at each router) for fragmentation/ reassembly total datagram length (bytes) upper layer protocol to deliver payload to head. len type of service “type” of data (not used) flgs fragment offset upper layer 32 bit destination IP address Options (if any) E.g. timestamp, record route taken, specify list of routers to visit. how much overhead with TCP? r 20 bytes of TCP r 20 bytes of IP r = 40 bytes + app layer overhead

31 Network Layer4-31 IP Fragmentation & Reassembly r network links have MTU (max.transfer size) - largest possible link-level frame. m different link types, different MTUs r large IP datagram divided (“fragmented”) within net m one datagram becomes several datagrams m “reassembled” only at final destination m IP header bits used to identify, order related fragments r Now most packet has less than 1,500 bytes m due to Ethernet m Very rare fragmentation in practice fragmentation: in: one large datagram out: 3 smaller datagrams reassembly

32 Network Layer4-32 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing

33 Network Layer4-33 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host/router and physical link m router’s typically have multiple interfaces m host typically has one interface m IP addresses associated with each interface 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 223.1.1.1 = 11011111 00000001 00000001 00000001 223 111

34 Network Layer4-34 Subnets r IP address: m subnet part (high order bits) m host part (low order bits) r What’s a subnet ? m device interfaces with same subnet part of IP address m can physically reach each other without intervening router 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 network consisting of 3 subnets subnet

35 Network Layer4-35 Subnets 223.1.1.0/24 223.1.2.0/24 223.1.3.0/24 Recipe r To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet. Subnet mask: /24

36 Network Layer4-36 Subnets How many? 223.1.1.1 223.1.1.3 223.1.1.4 223.1.2.2 223.1.2.1 223.1.2.6 223.1.3.2 223.1.3.1 223.1.3.27 223.1.1.2 223.1.7.0 223.1.7.1 223.1.8.0223.1.8.1 223.1.9.1 223.1.9.2

37 Network Layer4-37 IP addressing: CIDR CIDR: Classless InterDomain Routing m subnet portion of address of arbitrary length m address format: a.b.c.d/x, where x is # bits in subnet portion of address 11001000 00010111 00010000 00000000 subnet part host part 200.23.16.0/23

38 IP Subnet r For a “a.b.c.d/n” subnet m It has 2 32-n IP addresses m The first IP address in this subnet is: a.b.c.d Its last n bits must be 0 This address is usually reserved, not used for any computer m The last address in the block can be found by setting the rightmost 32 − n bits to 1s This address is used as broadcast address Network Layer4-38

39 Subnet Example A /28 block of addresses is granted to a small organization. We know that one of the addresses is 205.16.37.39. What is the first address in the block? What is its x.y.z.t/n representation? Solution The binary representation of the given address is 11001101 00010000 00100101 00100111 If we set 32−28 rightmost bits to 0, we get 11001101 00010000 00100101 00100000 or 205.16.37.32 The block representation is 205.16.37.32/28 Network Layer4-39

40 Network Layer4-40 IP addresses: how to get one? Q: How does host get IP address? r hard-coded by system admin in a file m Wintel: control-panel->network->configuration- >tcp/ip->properties m UNIX: /etc/rc.config r DHCP: Dynamic Host Configuration Protocol: dynamically get address from a server in subnet m “plug-and-play” (more in next chapter)

41 Network Layer4-41 IP addresses: how to get one? Q: How does network get subnet part of IP addr? A: gets allocated portion of its provider ISP’s address space ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20 Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23 Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23 Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23... ….. …. …. Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

42 Network Layer4-42 Hierarchical addressing: route aggregation “Send me anything with addresses beginning 200.23.16.0/20” 200.23.16.0/23200.23.18.0/23200.23.30.0/23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning 199.31.0.0/16” 200.23.20.0/23 Organization 2...... Hierarchical addressing allows efficient advertisement of routing information:

43 Network Layer4-43 Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization 1 “Send me anything with addresses beginning 200.23.16.0/20” 200.23.16.0/23200.23.18.0/23200.23.30.0/23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23” 200.23.20.0/23 Organization 2...... Remember router’s longest matching principle

44 Network Layer4-44 IP addressing: the last word... Q: How does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers m allocates addresses m manages DNS m assigns domain names, resolves disputes r ICANN publishes /8 address allocation r You can use online “IP address locator” to find out where a packet comes from m http://www.geobytes.com/IpLocator.htm m www.ip2location.com/free.asp

45 Network Layer4-45 NAT: Network Address Translation 10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4 138.76.29.7 local network (e.g., home network) 10.0.0/24 rest of Internet Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual) All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

46 Network Layer4-46 NAT: Network Address Translation r Motivation: local network uses just one IP address as far as outside world is concerned: m no need to be allocated range of addresses from ISP: - just one IP address is used for all devices m devices inside local net not explicitly addressable, visible by outside world (a security plus) Cannot be scanned or infected by worm or attackers outside Internet

47 Network Layer4-47 NAT: Network Address Translation Implementation: NAT router must: m outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)... remote clients/servers will respond using (NAT IP address, new port #) as destination addr. m remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair m incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

48 Network Layer4-48 NAT: Network Address Translation 10.0.0.1 10.0.0.2 10.0.0.3 S: 10.0.0.1, 3345 D: 128.119.40.186, 80 1 10.0.0.4 138.76.29.7 1: host 10.0.0.1 sends datagram to 128.119.40.186, 80 NAT translation table WAN side addr LAN side addr 138.76.29.7, 5001 10.0.0.1, 3345 …… S: 128.119.40.186, 80 D: 10.0.0.1, 3345 4 S: 138.76.29.7, 5001 D: 128.119.40.186, 80 2 2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table S: 128.119.40.186, 80 D: 138.76.29.7, 5001 3 3: Reply arrives dest. address: 138.76.29.7, 5001 4: NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345

49 Network Layer4-49 NAT: Network Address Translation r 16-bit port-number field: m 60,000 simultaneous connections with a single LAN-side address! r NAT is controversial: m violates end-to-end argument Internal computers not visible to outside Outside hosts have trouble to request service from local computers, e.g., P2P, video conference, web hosting. m address shortage should instead be solved by IPv6


Download ppt "Network Layer4-1 Chapter 4: Network Layer Chapter goals: r Understand principles behind network layer services: m Routing (path selection) m dealing with."

Similar presentations


Ads by Google