Presentation is loading. Please wait.

Presentation is loading. Please wait.

Green’s function retrieval by iterative substitution or inversion (

Similar presentations


Presentation on theme: "Green’s function retrieval by iterative substitution or inversion ("— Presentation transcript:

1 Green’s function retrieval by iterative substitution or inversion (
Green’s function retrieval by iterative substitution or inversion (?) of the Marchenko equation Joost van der Neut (Delft University of Technology)

2 Acknowledgements Satyan Singh, Jyoti Behura, Roel Snieder
Filippo Broggini, Dirk-Jan van Manen Kees Wapenaar, Evert Slob Jan Thorbecke Ivan Vasconcelos Bowen Guo, Jerry Schuster Andrey Bakulin

3 Introduction

4 Input for Marchenko Redatuming
^ ^ ^ ^ ^ 1 EPSI output Data Multiple-free Wavelet-free Ghost-free Data Source Function Surface Reflectivity Data (Van Groenestijn & Verschuur, 2009; Lin and Herrmann, 2013)

5 Input for Marchenko Redatuming
^ ^ ^ ^ ^ 1 EPSI output Data Multiple-free Wavelet-free Ghost-free Data Source Function Surface Reflectivity Data (Van Groenestijn & Verschuur, 2009; Lin and Herrmann, 2013) 2 Background Green’s function Focal point

6 The aim of Marchenko redatuming
X gdown Marchenko redatuming g0 gup

7 Redatuming below a complex overburden
= * gup Xdatum gdown Retrieve e.g. by inversion

8 Examples

9 Example 1 T0 R Conventional image Marchenko image

10 Example 2

11 Example 2 – Conventional image

12 Example 2 – Marchenko image

13 Example 3 - Conventional
Model Target area Image

14 (with adaptive subtraction)
Example 3 – Marchenko (with adaptive subtraction) Model Target area Image

15 Example 4 - Conventional
Velocity Density Image Red = without multiples Yellow with multiples Yellow Red 7000 m/s 4000 kg / m3

16 Example 4 - Marchenko Velocity Density Image Red = without multiples
Yellow Marchenko result Yellow Red 7000 m/s 4000 kg / m3

17 Example 4 with erroneous (constant) velocity - Conventional
Density Image Red = without multiples Yellow with multiples Yellow Red 7000 m/s 4000 kg / m3

18 Example 4 with erroneous (constant) velocity – Marchenko
Density Image Red = without multiples Yellow Marchenko result Yellow Red 7000 m/s 4000 kg / m3

19 Example 5 - Sigsbee Marchenko Conventional Behura et al. (2014)

20 Theory

21 The focusing function (Wapenaar et al., 2014)
Focal point Response Earth Focusing function

22 The focusing function (Wapenaar et al., 2014)
Heterogeneous Focal point Response Earth Focusing function

23 The focusing function (Wapenaar et al., 2014)
Heterogeneous Focal point Response Earth Focusing function

24 Data acting on the focusing function
Heterogeneous Focal point Heterogeneous Time-reversed Focusing function & Green’s function Reflection response Focusing function

25 Representation in matrix-vector notation
Time-reversal Focusing function Green’s function Convolution with data Focusing function

26 Representation in matrix-vector notation
Time-reversal Focusing function Green’s function Convolution with data Focusing function

27 Representation in matrix-vector notation
Time-reversal Focusing function Green’s function Convolution with data Focusing function Unknown Unknown

28 Exploiting causality Time-reversed Focusing function Green’s function

29 1 Exploiting causality Window function Time-reversed Focusing function
Green’s function

30 Exploiting causality 1 Window function Time reversal Focusing function

31 Exploiting causality 1 Window function Green’s function

32 1 1 Exploiting causality Window function Green’s function Background
Window function Green’s function Background Green’s function

33 Green’s function representation
Apply Intial Green’s function (model) Window Time Reversal Convolution with data Focusing function

34 Green’s function representation
Apply Intial Green’s function (model) Window Time Reversal Convolution with data Focusing function

35 Retrieved Green’s functions - 1D results from spgl1
Velocity Density Iterative solution (50 iterations) spgl1 inversion (100 iterations) 7000 m/s 4000 kg / m3

36 Applications for Least-Squares Migration?

37 Least-Squares Migration
Data = perturbation

38 Born approximation Data = perturbation

39 Using Marchenko-based Green’s functions?
Data = perturbation Marchenko mapping:

40 Discussion

41 Revisiting the problem
1. EPSI (inversion): 2. Focusing function Retrieval (inversion): 3. Green’s function Retrieval (forward): 4. Least-Squares Migration (inversion): δ δ


Download ppt "Green’s function retrieval by iterative substitution or inversion ("

Similar presentations


Ads by Google