Download presentation
Presentation is loading. Please wait.
Published byChristopher Ross Modified over 8 years ago
1
Green’s function retrieval by iterative substitution or inversion (
Green’s function retrieval by iterative substitution or inversion (?) of the Marchenko equation Joost van der Neut (Delft University of Technology)
2
Acknowledgements Satyan Singh, Jyoti Behura, Roel Snieder
Filippo Broggini, Dirk-Jan van Manen Kees Wapenaar, Evert Slob Jan Thorbecke Ivan Vasconcelos Bowen Guo, Jerry Schuster Andrey Bakulin
3
Introduction
4
Input for Marchenko Redatuming
^ ^ ^ ^ ^ 1 EPSI output Data Multiple-free Wavelet-free Ghost-free Data Source Function Surface Reflectivity Data (Van Groenestijn & Verschuur, 2009; Lin and Herrmann, 2013)
5
Input for Marchenko Redatuming
^ ^ ^ ^ ^ 1 EPSI output Data Multiple-free Wavelet-free Ghost-free Data Source Function Surface Reflectivity Data (Van Groenestijn & Verschuur, 2009; Lin and Herrmann, 2013) 2 Background Green’s function Focal point
6
The aim of Marchenko redatuming
X gdown Marchenko redatuming g0 gup
7
Redatuming below a complex overburden
= * gup Xdatum gdown Retrieve e.g. by inversion
8
Examples
9
Example 1 T0 R Conventional image Marchenko image
10
Example 2
11
Example 2 – Conventional image
12
Example 2 – Marchenko image
13
Example 3 - Conventional
Model Target area Image
14
(with adaptive subtraction)
Example 3 – Marchenko (with adaptive subtraction) Model Target area Image
15
Example 4 - Conventional
Velocity Density Image Red = without multiples Yellow with multiples Yellow Red 7000 m/s 4000 kg / m3
16
Example 4 - Marchenko Velocity Density Image Red = without multiples
Yellow Marchenko result Yellow Red 7000 m/s 4000 kg / m3
17
Example 4 with erroneous (constant) velocity - Conventional
Density Image Red = without multiples Yellow with multiples Yellow Red 7000 m/s 4000 kg / m3
18
Example 4 with erroneous (constant) velocity – Marchenko
Density Image Red = without multiples Yellow Marchenko result Yellow Red 7000 m/s 4000 kg / m3
19
Example 5 - Sigsbee Marchenko Conventional Behura et al. (2014)
20
Theory
21
The focusing function (Wapenaar et al., 2014)
Focal point Response Earth Focusing function
22
The focusing function (Wapenaar et al., 2014)
Heterogeneous Focal point Response Earth Focusing function
23
The focusing function (Wapenaar et al., 2014)
Heterogeneous Focal point Response Earth Focusing function
24
Data acting on the focusing function
Heterogeneous Focal point Heterogeneous Time-reversed Focusing function & Green’s function Reflection response Focusing function
25
Representation in matrix-vector notation
Time-reversal Focusing function Green’s function Convolution with data Focusing function
26
Representation in matrix-vector notation
Time-reversal Focusing function Green’s function Convolution with data Focusing function
27
Representation in matrix-vector notation
Time-reversal Focusing function Green’s function Convolution with data Focusing function Unknown Unknown
28
Exploiting causality Time-reversed Focusing function Green’s function
29
1 Exploiting causality Window function Time-reversed Focusing function
Green’s function
30
Exploiting causality 1 Window function Time reversal Focusing function
31
Exploiting causality 1 Window function Green’s function
32
1 1 Exploiting causality Window function Green’s function Background
Window function Green’s function Background Green’s function
33
Green’s function representation
Apply Intial Green’s function (model) Window Time Reversal Convolution with data Focusing function
34
Green’s function representation
Apply Intial Green’s function (model) Window Time Reversal Convolution with data Focusing function
35
Retrieved Green’s functions - 1D results from spgl1
Velocity Density Iterative solution (50 iterations) spgl1 inversion (100 iterations) 7000 m/s 4000 kg / m3
36
Applications for Least-Squares Migration?
37
Least-Squares Migration
Data = perturbation
38
Born approximation Data = perturbation
39
Using Marchenko-based Green’s functions?
Data = perturbation Marchenko mapping:
40
Discussion
41
Revisiting the problem
1. EPSI (inversion): 2. Focusing function Retrieval (inversion): 3. Green’s function Retrieval (forward): 4. Least-Squares Migration (inversion): δ δ
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.