Presentation is loading. Please wait.

Presentation is loading. Please wait.

MicroMegas for DHCAL Status and activities at LAPP Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise.

Similar presentations


Presentation on theme: "MicroMegas for DHCAL Status and activities at LAPP Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise."— Presentation transcript:

1 MicroMegas for DHCAL Status and activities at LAPP Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espagilière Renaud Gaglione Raphael Gallet Nicolas Geffroy Claude Girard Jean Jacquemier Yannis Karyotakis Fabrice Peltier Julie Prast Jean Tassan Guillaume Vouters

2 Outline 16/02/20162Ambroise Espargilière MicroMegas R&D for DHCAL  MicroMegas specificities at lapp  X ray and Test Beam results  MicroMegas with Digital Readout Simulation Future m² Design Conclusion

3 MicroMegas 16/02/2016Ambroise Espargilière3 Micro Mesh gaseous structure or pads Description: –Gas mix: Argon+Isobutane –Drift and Mesh HV < 500 V –High detection rate –Robust, cheap (industrial process) –Thickness: 3,2 mm –Delicate functioning: sparks Readout: –Analog for characterisation GASSIPLEX + CENTAURE DAQ –Digital : HARDROC or DIRAC + Detector InterFace (DIF) board + EUDET DAQ2 or CrossDAQ

4 MicroMegas 16/02/2016Ambroise Espargilière4 Bulk technology from R. De Oliveira & O. Pizzirusso Bulk : Mesh laminated on the PCB with 1x1 cm² pads Industrial process Cheap and robust Steel top : Part of the absorber Holes for X Ray tests Holds a 55 µm thick cathode Glued on a plastic frame 3mm above mesh 12x32 cm 2 384 pads 325 LPI mesh spacers : 120  m heigh 300  m diameter

5 X-ray Response 16/02/2016Ambroise Espargilière5 Set-up: – 55 Fe source (5.9 keV) – Trigger on mesh – analog readout Entries ADC Counts escape peak A. Espargilière pedestal X-ray peak V Mesh (V) Mean (ADC Counts) Slope = - 4.9 ADC/mbar = - 2 fC/mbar K. Karakostas Mean (ADC Counts) Pressure (mbar) Gain : up to 10 000 Energy resolution : down to 8.5 % (FWHM = 19.6)%

6 Test Beam 2008 16/02/2016Ambroise Espargilière6 H2 line at SPS-CERN (August 2008) With the IRFU team (P. Colas, D. Attié, S. Turnbull) The data –200k Pions @ 200 GeV –200k Muons @ ~200 GeV –250k Pions with 1 steel block + absorbers Characterisation of the prototypes: –efficiency and multiplicity –pads / prototypes uniformity –X-talk studies –behaviour in hadronic shower T9 line at PS-CERN (November 2008 TB) The data –200k Pions @ ~7 GeV From dream to reality A. Espargilière Preliminary Results

7 Test Beam Setup 16/02/2016Ambroise Espargilière7 Trigger: 3 scintillators in coincidence 3 MicroMegas 6x16 pads 1 MicroMegas 12x32 pads Steel absorber option analog readout

8 Results 16/02/2016Ambroise Espargilière8 MIP Signal observed on every Single Channel E (ADC counts) MIP MPV ~ 45 fC E Nb of Events all triggers Pedestal: aligned online (0.2 fC RMS) constant over time average sigma = 0.6 fC  Good noise conditions! MPV variation under study: Electronics channels disparity Gain homogeneity Normalised MPV Number of Pads platinum events

9 Results 16/02/2016Ambroise Espargilière9 Efficiency Measurements: Efficiency Chamber 097,05 ± 0,07% Chamber 198,54 ± 0,05% Chamber 292,99 ± 0,10% Chamber 396,17 ± 0,07% gold events Threshold : 2.8 fC = 0.06 MIP MPV Maps Available for each chamber

10 Results 16/02/2016Ambroise Espargilière10 Multiplicity < 1.1 – 2 chambers – ~ 75k gold events / chamber – threshold : 2.8 fC = 0.06 MIP MPV gold events

11 MicroMegas with Digital Readout 16/02/2016Ambroise Espargilière11 PCB with DIRAC1 64 channels ASIC (R. Gaglione, IPNL) DIRAC Sparks protections Digital link to DAQ (possibility to chain detectors) mask for bulk laying8x8 pads with bulk Bulk from R. De Oliveira & O. Pizzirusso First operational Bulk MicroMegas with embedded readout electronics !

12 MicroMegas with Digital Readout 16/02/2016Ambroise Espargilière12 Tested during the August 2008 TB Beam Profile when moving the X-Y table –Future test beam: Need a stack of chambers to check efficiencies Lower Threshold = 19 fC

13 MicroMegas with Digital Readout 16/02/2016Ambroise Espargilière13 PCB with 4 HARDROC1 64 channels ASIC 3 layers of 8x32 cm 2 sparks protections HARDROC1 bulk

14 MicroMegas with Digital Readout 16/02/2016Ambroise Espargilière14 PCB with ASICs Tested during the November 2008 TB –Difficulties to get the bulk stable –Data currently under study –Readout : DIF board Separated from the SLAB For large number of ASICs HARDROC, DIRAC and also SPIROC and SKYROC DIF task force interface : USB or EUDET DAQ –Excellent work from Guillaume Vouters (DIF) and Christophe Combaret (CrossDaQ)

15 Simulation 16/02/2016Ambroise Espargilière15 Simulation tools –SLIC full simulation of SiD concept (Geant 4)‏ –Analysis using JAS3 2008 Test beam setup (A. Espargilière) DHCAL with μMegas (J. Blaha)  Comparison between analog and digital  Thresholds & absorber studies

16 Simulation 16/02/2016Ambroise Espargilière16 2008 Test beam setup is being simulated – Comparison with real data – Better understanding of our detector – Preparation for next test beam 30 cm iron absorber in front Simulation Test beam

17 Simulation 16/02/2016Ambroise Espargilière17 DHCAL with μMegas ● Full m² geometry implemented ● Readout: from 0.5 x 0.5 cm² to 4x4 cm² pads ● 3mm active volume: Gas mixture (95 %Argon + 5 % Isobutane) ● 1.9 cm thick absorber ● Different absorber materials ● 40 or 80 layers (~4, 5 or ~9 λ) ● Thickness of active layer: 6 mm ● Ideal MicroMegas, digitization not yet fully implemented DHCAL 40 planes (μMegas) 100 GeV Pions

18 Simulation 16/02/2016Ambroise Espargilière18 Number of hits in calorimeter vs total deposited energy E(GeV) Nb of Hits Significant correlation between Number of hits and deposited energy Digital Threshold = 1 MIP

19 Simulation 16/02/2016Ambroise Espargilière19 Comparison between analog and digital analog E(GeV) Nb of events Digital: Threshold = 1 MIP Nb of Hits Nb of events First glimpse : Digital signal seem more gaussian and more narrow 10 GeV Pions

20 Simulation 16/02/2016Ambroise Espargilière20 Energy resolution vs hit threshold Threshold (MIP) σ E /E Energy resolution vs pion energy E (GeV) σ E /E Threshold range with constant energy resolution Analog: 0.054 + 58%/√E Digital: 0.040 + 52%/√E Worse resolution at High energy  Need more than 1 threshold ?

21 Simulation 16/02/2016Ambroise Espargilière21 100 GeV muons 1 mm Gas 6 mm Gas 3 mm Gas Deposited energy in all planes for different gas volume A lot more is under study … (see Next Calice Analysis Meeting on 9 feb )

22 Future m² Design 16/02/2016Ambroise Espargilière22 9 216 channels 96 x 96 cm² active area 6 ASU  6 independent bulks 3 DIF + interDIF boards ASU = Active Sensor Unit (Readout PCB with 1cm² pads)

23 Future m² Status 16/02/2016Ambroise Espargilière23 DIF & DAQ almost ready ASU :  24 HARDROC2  Design and routing done  single ASU test box under conception Clean room ready for m² assembly Mechanical prototype under construction

24 Conclusion 16/02/2016Ambroise Espargilière24 MicroMegas R&D for DHCAL very active! – ASIC developments – Innovative prototypes, first µMegas with embedded digital readout – Tests Beam: very promising results (still a lot to analyse) – Future Test Beam in 2009 … Towards – 1m 2 prototype – Calorimeter of 1m 3 In parallel : work on simulation – 2008 TB prototypes, future 1m 3 and leakageless 8m 3 – Different absorber material, active medium, pads size…

25 16/02/2016Ambroise Espargilière25 Thank you

26 Bonus 16/02/2016Ambroise Espargilière26

27 Efficiency maps for All chambers 16/02/2016Ambroise Espargilière27 x x x x Y Y YY

28 MPV Maps for all chambers 16/02/2016Ambroise Espargilière28 Y (cm) X (cm) HV Pad


Download ppt "MicroMegas for DHCAL Status and activities at LAPP Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise."

Similar presentations


Ads by Google