Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Возможности нейтронного и синхротронного излучения для исследования структуры липидных мембран М.А. Киселев Лаборатория нейтронной физики Объединенный.

Similar presentations


Presentation on theme: "1 Возможности нейтронного и синхротронного излучения для исследования структуры липидных мембран М.А. Киселев Лаборатория нейтронной физики Объединенный."— Presentation transcript:

1 1 Возможности нейтронного и синхротронного излучения для исследования структуры липидных мембран М.А. Киселев Лаборатория нейтронной физики Объединенный институт ядерных исследований, Дубна E-mail: kiselev@nf.jinr.ru Совещание«Современные ядерно-физические методы исследования в физике конденсированных сред», Минск, БГУ, 22-23 апреля, 2013

2 Phospholipids and ceramides

3 3 Phospholipids – major component of cell membranes. Ceramides – major components of stratum corneum lipid matrix. Phospholipids and ceramides – important materials for drug and cosmetic industry.

4 4 Objects and methods Unilamellar vesicles Multilamelar vesicles (Liposomes) Oriented multilamellar planar system on quartz substrate Neutron small-angle scattering Small-angle and wide-angle powder X-ray diffraction at synchrotron source Neutron diffraction

5 5 Modern methods for the characterization of the lipid nanosystems : Method of lamellar and lateral synchrotron X-ray diffraction in real time Method of neutron diffraction for study of model stratum corneum membranes Method of separated form factors for characterization of vesicular nanodrugs Method of contrast variation of X-ray scattering by disaccharides.

6 6 Real-time X-ray diffraction at cooling DPPC/water system at synchrotron. Ice crystal Free water Diffusion Cooling with the rate of 1 o C/min, acquisition - 1min/spectrum  d=5.9Å crystallization

7 7 Low-temperature phase transition in DPPC/DMSO/water system at X dmso =0.05. Synchrotron. Ice New phase Cooling with the rate of 1 o C/min, acquisition - 1min/spectrum

8 8 Drug penetration pathways across the skin. Down hair follicle Across SC Down sweat gland Intercellular route

9 9 Fourier profiles at RH=60%, T=32 o C Repeat distance 45.63±0.04Å Repeat distance 54.75  0.03 Å Membrane thickness 45.8  0.1 Å Intermembrane space 9.0  0.1 Å Model SC membranes DMPC

10 10 Nanostructure of fully hydrated model SC membrane ceramide 6/cholesterol/palmitic acid/cholesterol sulfate =55/25/15/5 M. A. Kiselev, N. Yu. Ryabova, A. M. Balagurov, S. Dante, T. Hauss, J. Zbytovska, S. Wartewig, R. H. H. Neubert. New insights into structure and hydration of stratum corneum lipid model membrane by neutron diffraction. European Biophysics J. 34 (2005) 1030–1040.

11 11 Hyposesis of super-strong intermembrane interaction created by ceramide 6 in fully extended conformatiion (armature reinforcement). Fully extended conformation of ceramide Hair-pin conformation of ceramide Bricks and mortar model of SC M.A. Kiselev. Conformation of ceramide 6 molecules and chain–flip transitions in the lipid matrix of the outermost layer of mammalian skin, the stratum corneum. Crystallography Reports, 2007, Vol. 52, No. 3, pp. 525–528

12 12 Real- time neutron diffraction at DN-2, IBR-2. Time-of-flight. DPPC membrane hydration-dehydration in real time at T=20 o C Hydration 480min Dehydration 360min

13 13 Nanostructure alteration during hydration-dehydration as result of fourier-synthesis in real-time. T=20 o C. Water layer d w Membrane thickness d B Repeat distance d Thickness of the hydrocarbon chains region d c d dBdB dcdc Н.Ю. Рябова, М.А. Киселев, А.И. Бескровный, А.М. Балагуров. Исследование структуры многослойных липидных мембран методом дифракции нейтронов в реальном времени. Физика твердого тела, 52 № 5 (2010) 984-991.

14 Chamber with excess of water New possibilities to study the influence of the skin penetration enhancer via neutron diffraction at IBR- 2 reactor. 14

15 15 Unilamellar vesicles from phospholipid molecules Neutron small-angle scattering in D 2 O X-ray small-angle scattering in sucrose solutions From point of physics it is nanospheres with liquid crystal surface R=250Å n  2 ·10 14 vesicles/cm 3 for 1% DMPC (w/w) 6500 DMPC molecules in one layer for 30 o C M.A. Kiselev, P. Lesieur, A.M. Kisselev, D. Lombardo, M. Killany, S. Lesieur. Sucrose solutions as prospective medium to study the vesicle structure: SAXS and SANS study. J. Alloys and Compounds 328 (2001) 71-76.

16 16 SANS pattern at 30 °C of unilamellar DMPC vesicles prepared by extrusion through 500 Å pores at DMPC concentration of 1% (w/w). qRqR qmqm

17 17 SAXS patterns at 10 °C (circles) and 30 °C (open circles) of unilamellar DMPC vesicles in 40% aqueous trehalose solution, DMPC concentration 3%(w/w)

18 18 Method of Separated Form Factors (SFF). For the case of  (x)=Const  c (x)=  (x)   D2O is contrast, the difference between scattering length densities of the bilayer  (x) and the heavy water  D2O. M.A. Kiselev, P. Lesieur, A.M. Kisselev, D. Lombardo, V.L. Aksenov. Model of separated form factors for unilamellar vesicles. J. Applied Physics A 74 (2002) S1654-S1656

19 19 ModelD F, Å, Å , % d, ÅD, ÅNwNw A, Å 2 IB, cm -1 SFF500275.6±0.52747.8±0.220.5±0.3 11.9  0.361.0  0.4 0.007 Full500275.7±0.42747.8±0.220.5±0.3 11.9  0.361.0  0.4 0.007 SFF1000500*4845.5±0.620.8±0.410.8±0.462.6±1.00.007 Results for liquid phase at 30 o C, HH approximation of  (x) Multilamellar (small curved) vesicles d = 44.2 Å A=59.6 Å 2 J.Nagle, S. Tristram-Nagle. Structure of lipid bilayers. BBA 1469 (2000) 159-195 М.А. Kiselev, E.V. Zemlyanaya, V.K. Aswal, R.H.H. Neubert. What can we learn about the lipid vesicle structure from the small angle neutron scattering experiment? European Biophysics J. 35 (2006) 477-493.

20 20 Practical applications Nanoparticles based on the phospholipids Phosphogliv – 20-50 нм ? ?????? 80% products in the bionanotechnology are drug delivery systems !!! Turnover - 6 billion USD/year

21 21 Phospholipid transport nanosystems (FTNS) SAXS patterns. DMPC vesicles in 40% sucrose buffer – red line (LURE, France). 25% solution of FTNS in water – blue line (DIKSI, Sibirea-2, Moscow). Black line - 1/q 2 law.

22 22 Conclusions. Possibilities to study in future: Drug diffusion through model SC membranes. Nanostructure of the magnetovesicles. Elastic properties of the transdermal drug delivery vesicles and magnetovesicles. Effectiveness of the cryoprotectors applied for bacteria storage.

23 А.М. Balagurov JINR Russua V.L. Aksenov JINR Russia E.V. Zemlyanaya JINR Russia E.V. Ermakova JINR Russia N.Y. Ryabova JINR Russia A.Y. Gruzinov KI Russia A.B. Zabelin KI Russia O. M. Ipatova IBMC Russia 23 Participants from Russia

24 Foreign participants P. Lesieur LURE, France M. Ollivon University Paris-sud, France R. Neubert MLU Germany J. Zbytovska MLU Germany D. Kessner MLU Germany A. Schroter MLU Germany M. Janich MLU Germany T. Gutberlet HMI Germany Th. Hauss GCB Germany S. Dante GCB Germany V.K. Aswal PSI Switzerland 24

25 Thank you for the attention 25


Download ppt "1 Возможности нейтронного и синхротронного излучения для исследования структуры липидных мембран М.А. Киселев Лаборатория нейтронной физики Объединенный."

Similar presentations


Ads by Google