Download presentation
Presentation is loading. Please wait.
Published byMaude Waters Modified over 9 years ago
1
تنظيم پارامترهاي يك سيستم با روش کمترين مربعات خطا Parameter Identification of a System with LSE … Vali Derhami Yazd University, Computer Department vderhami@yazduni.ac.ir
2
Author: Vali Derhami Structure Identification: Priori knowledge Parameter Identification (Jang’s book, Ch.5) 2/13 Aim is finding θ such that can be desired. This chapter we discuss LSE
3
Author: Vali Derhami 3/13 Parameter Identification
4
Author: Vali Derhami 4/13 Parameter Identification Training Data, [y i ; u i ] i=1,2, …N
5
Author: Vali Derhami 5/13 Least square methods
6
Author: Vali Derhami Basics of matrix manipulation & calculus From Ch 5.2 of Jang’s book 6/13
7
Author: Vali Derhami Least -squares estimator f 1, f 2,..,f n known functions of u θ 1, θ 2,…, θ n : unknown parameters Training Data, [y i ; u i ] i=1,2, m m linear equations: 7/13
8
Author: Vali Derhami Least -squares estimator 8/13
9
Author: Vali Derhami Least -squares estimator 9/13 Usually m> n: Modified as e=y-Aθ Find so minimize sum of squared errors:
10
Author: Vali Derhami Least -squares estimator (Theorem) 10/13 If W is defined as the desired weighting matrix (symmetric, and W>0) Ex 5.2
11
Author: Vali Derhami Recursive Least -Squares Estimator If after tuning with k pairs, new data pair become available as k+1 entry : (a T,y) 11/13
12
Author: Vali Derhami Recursive Least -Squares Estimator A T y=A T A θ, P k =(A T A) -1 Hence: 12/13 Lemma 5.6: P 0 =αI where α >>0 for Ex. α=10 8
13
Author: Vali Derhami Recursive Least -Squares Estimator 13/13
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.