Download presentation
Presentation is loading. Please wait.
1
Key Observation Adjacencies in the K-Map
011 111 BC A 00 01 11 10 010 110 000 010 1 10 100 B 001 1 001 01 1 1 101 101 C C 000 100 A Any two adjacant cells in the K-map differ in exactly one variable. The uniting theorem can be applied when adjacent cells contain (function =1) to eliminat the changing variable.
2
Design Examples Two Bit Comparator Truth Table Block Diagram
Design Steps: 1- Simplify to reduce cost (three 4-variable K-maps, one for each output) 2- Implement using a suitable design style (e.g. 2-level AND-OR, NAND-NAND, or multilevel techniques)
3
Design Examples Two Bit Comparator (continued)
F1 = A' B' C' D' + A' B C' D + A B C D + A B' C D' F2 = A' B' D + A' C F3 = B C' D' + A C' + A B D' f1 = AC(BD+bd) + ac(bd+BD) = (AC+ac) (bd+BD) = (a c) (b d)
4
Design Examples Two-Bit Adder Truth Table Block Diagram
5
Design Example Two-Bit Adder (Continued) X = A C + B C D + A B D
00 01 11 10 1 C CD A D B K-map for X AB 00 01 11 10 1 C CD A D B K-map for Y AB 00 01 11 10 1 C CD A D B K-map for Z X = A C + B C D + A B D Z = B D' + B' D = B xor D Y = A' B' C + A B' C' + A' B C' D + A' B C D' + A B C' D' + A B C D
6
5-Variable K-Maps Constructed from two 4-variable K-Maps. A = 0 A = 1
100 101 111 110 B C ABC 000 001 011 010 00 01 11 10 D DE E 1 f = bCDE + Bd C 100 101 111 110 B ABC 000 001 011 010 00 01 11 10 D DE 1 E g = ABe + Bce + bE
7
ƒ(A,B,C,D,E) = C E + A B' E + B C' D' E' + A' C' D E'
5-Variable K-Maps Another View ƒ(A,B,C,D,E) = Sm(2,5,7,8,10,13,15,17,19,21,23,24,29 31) ƒ(A,B,C,D,E) = C E + A B' E + B C' D' E' + A' C' D E'
8
6-Variable K-Maps ƒ(A,B,C,D,E,F) = Sm(2,8,10,18,24, 26,34,37,42,45,50,
53,58,61)
9
6-Variable K-Maps ƒ(A,B,C,D,E,F) = Sm(2,8,10,18,24, 26,34,37,42,45,50,
53,58,61) = D' E F' + A D E' F + A' C D' F'
10
Definitions Implicant: Single 1 entry or any group of 1’s that can be combined together in a K-map to form a product term. (Dual): Single 0 entry or any group of 0’s that can be combined together in a K-map to form a sum term. Prime Implicant: an implicant that cannot be combined with another implicant to eliminate a term Essential Prime Implicant: a prime implicant that contains a 1 entry not covered by any other implicant. Example C CD 6 Prime Implicants: AB 00 01 11 10 A' B C’ , C D, A‘ D , B C' D’ , A C , AB D' 00 1 1 01 1 1 1 B essential 11 1 1 1 A Minimum cover = A’ D + A C + B C ‘ D ’ 10 1 1 D
11
Definitions Implicant: Single 1 entry or any group of 1’s that can be combined together in a K-map to form a product term. (Dual): Single 0 entry or any group of 0’s that can be combined together in a K-map to form a sum term. Prime Implicant: an implicant that cannot be combined with another implicant to eliminate a term Essential Prime Implicant: a prime implicant that contains a 1 entry not covered by any other implicant. Example C CD AB 00 01 11 10 00 1 1 01 1 1 1 B 11 1 1 1 A 10 1 1 D
12
Illustrating the Definitions
Prime Implicants: B D, C D, A C, B' C essential Essential primes form the minimum cover 5 Prime Implicants: B D, A B C', A C D, A' B C, A' C' D essential Essential implicants form minimum cover
13
Try the other axis Illustrating the Definitions Prime Implicants:
CD Prime Implicants: 00 01 11 10 AB A D’, AB, A C, BD 00 01 1 1 essential B 11 1 1 1 1 Essential primes form the minimum cover A 10 1 1 1 D Try the other axis 5 Prime Implicants: B D, A B C', A C D, A' B C, A' C' D essential Essential implicants form minimum cover
14
Quine-McCluskey (Tabular) Method
systematically finds all prime implicants Example: Simplify ƒ(A,B,C,D) = Sm(4,5,6,8,9,10,13) + Sd(0,7,15) Implication Table Column I 0000 0100 1000 0101 0110 1001 1010 0111 1101 1111 Step 1: List minterms and don’t cares using their binary representation, and group according to number of 1’s Principle: Combine terms in adjacent groups which differ in a single variable, and eliminate the changing variable. Remarks: Only terms in adjacent groups have to be compared with one another. Terms in non-adjacent groups differ in more than one variable. Thus can not be combined
15
Q & M Method ƒ(A,B,C,D) = Sm(4,5,6,8,9,10,13) + Sd(0,7,15) Step 2:
Compare elements of a group with k 1's against those with k+1 1's. If they differ by one bit, eliminate changing variable and place reduced term in next column. E.g., 0000 vs yields 0-00 0000 vs yields -000 Implication Table Column I Column II 0000 ¦ -000 0100 ¦ 1000 ¦ 01-0 0101 ¦ 0110 ¦ 1001 ¦ 1010 ¦ -101 0111 ¦ 1101 ¦ 1111 ¦ 11-1 When a term is used in a combination, mark that term with a check. If cannot be combined, mark term with a star. These are the prime implicants.
16
Q & M Method Step 2 Continues: Compare elements of a group in
Col. II with k 1's against those with k+1 1's. If they differ by one bit, eliminate changing variable and place reduced term in next column. E.g., vs yields 01- - -101 vs yields -1-1 Implication Table Column I Column II Column III 0000 ¦ * * -000 * 0100 ¦ * 1000 ¦ ¦ 01-0 ¦ 0101 ¦ * 0110 ¦ * 1001 ¦ 1010 ¦ ¦ -101 ¦ 0111 ¦ ¦ 1101 ¦ * 1111 ¦ ¦ 11-1 ¦
17
Q & M - Prime Implicant Chart
x x x x 5,7,13,15 (-1-1) 4,5,6,7(01--) 9,13(1-01) 8,10(10-0) 8,9(10-0) 0,8(-000) 0,4(0-00) 5,7,13,15 (-1-1) 4,5,6,7(01--) 9,13(1-01) 8,10(10-0) 8,9(10-0) 0,8(-000) 0,4(0-00) x x x x x x x x x x x x x x rows = prime implicants columns = minterms place an "X" if minterm is covered by the prime implicant If column has a single X, than the implicant associated with that row is essential. It must appear in minimum cover
18
Review Gate Logic NOT AND OR Description If X = 0 then ' = 1 = 1 then
' = 0 T ruth T able Switches X 1 X 1 T rue NOT X False X Description Truth Table Switches Z = 1 if X and Y X Y Z false are both 1 AND 1 X • Y 1 true 1 1 1 X Y Description Z = 1 if X or Y (or both) are 1 T ruth T able Switches X 1 Y 1 Z 1 False X + Y OR T rue X Y
19
Example : Logic circuit & its Switch realization
s = a (d+w)(c’+ e’) c e d w a s Gate realization a e’ c’ d w 1 s Switch realization
20
Logic Functions: NAND NAND AND
Description Z = 1 if X is 0 or Y T ruth T able Switches X 1 Y 1 Z 1 T rue NAND X • Y False X Y Description Truth Table Switches Z = 1 if X and Y X Y Z false AND are both 1 1 X • Y 1 true 1 1 1 X Y Note that switch circuit of the NAND gate is the complement of the switch circuit for the AND gate.
21
Logic Functions: NAND, NOR, XOR, XNOR
Description Z = 1 if both X and Y are 0 T ruth T able Switches NOR X 1 Y 1 Z 1 T rue X + Y False X Y Description Z = 1 if X or Y (or both) are 1 T ruth T able Switches X 1 Y 1 Z 1 False OR X + Y T rue X Y Note that switch circuit of the NOR gate is the complement of the switch circuit for the OR gate.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.