Download presentation
1
Sichuan University Software College
CHAPTER 6 Sequential Circuits’ Analysis Sichuan University Software College
2
Mealy Vs Moore machines
Mealy model: Both outputs and next state depend both on primary inputs AND present state. Moore model: Only next state depends directly on primary inputs AND present state. Outputs depend only on present state.
3
Mealy Vs Moore machines
Moore sequential circuit model Mealy sequential circuit model
4
State Machine Notation
Impute variable Output variable State variable Excitation variable State State variables and states are related by the expression: 2x=y State variables states
5
State Diagram Graphical representation of a state table.
Graph node with label s denotes state s Graph edge with label X denotes transition between two states when input X is applied S X
6
State Diagram of Mealy model
0/0 1/0 I/O 01 S1 S2 00 0/1 Reads as: When at state s1 and apply input I, we get output O and proceed to state s2. 0/1 0/1 1/0 10 1/0 11 1/0
7
State Diagram of Moore model
00,11 S1/O1 S2/O2 01,10 0/0 1/1 Reads as: When at state s1 with output O1 and apply input I, we proceed to state s2 with Output O2. 01,10 00,11
8
State Diagram
9
State Table Enumerates the relationship between inputs, outputs, and states of the sequential circuit. State Table
10
State Table State Table
11
Transition Table Each state is assigned a unique code.
Transition Table for state machine M1
12
Transition Table Transition Table for state machine M1
13
Excitation Table and Equations
D flip-flop used to realize circuit (two D flip-flops) Transition Table for state machine M1 state machine M1 excitation table using D flip-flops
14
Excitation Table and Equations
DA K-Map DB K-Map Z K-Map DA=f(FA,FB,x,y)=Σ(5,7,10,13,15)=FAFB’xy’+FAx’y+FBy DB=f(FA,FB,x,y)=Σ(2,3,4,5,6,7,14,15)=FA’FB+FA’x+FBx Z= f(FA,FB,x,y)=Σ(11)=FAFB’xy
15
Excitation Table and Equations
T flip-flop used to realize circuit (two T flip-flops) Transition Table for state machine M1
16
Excitation Table and Equations
TB K-Map TA K-Map TA=f(FA,FB,x,y)=Σ(5,7,8,11,12,14)=FAFB’xy+FAx’y’+FAFBy’+FA’FBy TB=f(FA,FB,x,y)=Σ(2,3,12,13)=FA’FB’x+FAFBx’
17
Excitation Table and Equations
S-R flip-flop used to realize circuit (two SR flip-flops) Transition Table for state machine M1 state machine M1 excitation table using S-R flip-flops
18
Excitation Table and Equations
SA K-Map RA K-Map SB K-Map RB K-Map SA=f(FA,FB,x,y)=Σ(5,7) +Σd(9,10,13,15) =FBy RA=f(FA,FB,x,y)=Σ(8,11,12,14) +Σd(0,1,2,3,4,6) =FB’xy+x’y’+FBy’ SB=f(FA,FB,x,y)=Σ(2,3) +Σd(4,5,6,7,14,15) =FA’x RB=f(FA,FB,x,y)=Σ(12,13) +Σd(0,1,8,9,10,11) =FAx’
19
Excitation Table and Equations
J-K flip-flop used to realize circuit (two J-K flip-flops) Transition Table for state machine M1 state machine M1 excitation table using J-K flip-flops
20
Excitation Table and Equations
JA K-Map KA K-Map JB K-Map KB K-Map JA=f(FA,FB,x,y)=Σ(5,7) +Σd(8,9,10,11,12,13,14,15) =FBy KA=f(FA,FB,x,y)=Σ(8,11,12,14) +Σd(0,1,2,3,4,6,7) =FB’xy+x’y’+FBy’ JB=f(FA,FB,x,y)=Σ(2,3) +Σd(4,5,6,7,12,13,14,15) =FA’x KB=f(FA,FB,x,y)=Σ(12,13) +Σd(0,1,2,3,8,9,10,11) =FAx’
21
Excitation Realization Cost
JA=FBy KA=FB’xy+x’y’+FBy’ JB=FA’x KB=FAx’
22
Excitation Realization Cost
SA=FBy RA=FB’xy+x’y’+FBy’ SB=FA’x RB=FAx’
23
Excitation Realization Cost
TA=FAFB’xy+FAx’y’+FAFBy’+FA’FBy TB=FA’FB’x+FAFBx’
24
Excitation Realization Cost
DA=FAFB’xy’+FAx’y+FBy DB=FA’FB+FA’x+FBx
25
Excitation Realization Cost
Y Z Z= FAFB’xy
26
TO BE CONTINUED
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.