Presentation is loading. Please wait.

Presentation is loading. Please wait.

600.465 - Intro to NLP - J. Eisner1 Finite-State and the Noisy Channel.

Similar presentations


Presentation on theme: "600.465 - Intro to NLP - J. Eisner1 Finite-State and the Noisy Channel."— Presentation transcript:

1 600.465 - Intro to NLP - J. Eisner1 Finite-State and the Noisy Channel

2 600.465 - Intro to NLP - J. Eisner2 Noisy Channel Model noisy channel X  Y real language X yucky language Y want to recover X from Y

3 600.465 - Intro to NLP - J. Eisner3 Noisy Channel Model noisy channel X  Y real language X yucky language Y want to recover X from Y correct spelling typos misspelling

4 600.465 - Intro to NLP - J. Eisner4 Noisy Channel Model noisy channel X  Y real language X yucky language Y want to recover X from Y (lexicon space)* delete spaces text w/o spaces

5 600.465 - Intro to NLP - J. Eisner5 Noisy Channel Model noisy channel X  Y real language X yucky language Y want to recover X from Y (lexicon space)* pronunciation speech language model acoustic model

6 600.465 - Intro to NLP - J. Eisner6 Noisy Channel Model noisy channel X  Y real language X yucky language Y want to recover X from Y tree delete everything but terminals text probabilistic CFG

7 600.465 - Intro to NLP - J. Eisner7 Noisy Channel Model noisy channel X  Y real language X yucky language Y p(X) p(Y | X) p(X,Y) * = want to recover x  X from y  Y choose x that maximizes p(x | y) or equivalently p(x,y)

8 Speech Recognition by FST Composition (Pereira & Riley 1996) 600.465 - Intro to NLP - J. Eisner8 p(word seq) p(phone seq | word seq) p(acoustics | phone seq).o. ə: phone context phone context CAT:k æ t trigram language model

9 600.465 - Intro to NLP - J. Eisner9 Noisy Channel Model p(X) p(Y | X) p(X,Y) * = a:D/0.9 a:C/0.1 b:C/0.8 b:D/0.2 a:a/0.7 b:b/0.3.o. = a:D/0.63 a:C/0.07 b:C/0.24 b:D/0.06 Note p(x,y) sums to 1. Suppose y=“C”; what is best “x”?

10 600.465 - Intro to NLP - J. Eisner10 Noisy Channel Model p(X) p(Y | X) p(X,Y) * = a:D/0.9 a:C/0.1 b:C/0.8 b:D/0.2 a:a/0.7 b:b/0.3.o. = a:D/0.63 a:C/0.07 b:C/0.24 b:D/0.06 Suppose y=“C”; what is best “x”?

11 600.465 - Intro to NLP - J. Eisner11 Noisy Channel Model p(X) p(Y | X) p(X, y) * = a:D/0.9 a:C/0.1 b:C/0.8 b:D/0.2 a:a/0.7 b:b/0.3.o. = a:C/0.07 b:C/0.24.o.* C:C/1 (Y=y)? restrict just to paths compatible with output “C” best path

12 600.465 - Intro to NLP - J. Eisner12 Edit Distance Transducer a:   :a b:   :b a:b b:a a:a b:b O(k) deletion arcs O(k) insertion arcs O(k 2 ) substitution arcs O(k) no-change arcs

13 600.465 - Intro to NLP - J. Eisner13 Edit Distance Transducer a:   :a b:   :b a:b b:a a:a b:b O(k) deletion arcs O(k) insertion arcs O(k 2 ) substitution arcs O(k) identity arcs Likely edits = high-probability arcs Stochastic

14 600.465 - Intro to NLP - J. Eisner14 clara Edit Distance Transducer a:   :a b:   :b a:b b:a a:a b:b Stochastic.o. = caca.o. c:  l:  a:  r:  a:   :c c:c  :c l:c  :c a:c  :c r:c  :c a:c  :c c:  l:  a:  r:  a:   :a c:a  :a l:a  :a a:a  :a r:a  :a a:a  :a c:  l:  a:  r:  a:   :c c:c  :c l:c  :c a:c  :c r:c  :c a:c  :c c:  l:  a:  r:  a:   :a c:a  :a l:a  :a a:a  :a r:a  :a a:a  :a c:  l:  a:  r:  a:  Best path (by Dijkstra’s algorithm)

15 Speech Recognition by FST Composition (Pereira & Riley 1996) 600.465 - Intro to NLP - J. Eisner15 p(word seq) p(phone seq | word seq) p(acoustics | phone seq).o. trigram language model pronunciation model acoustic model.o. observed acoustics

16 600.465 - Intro to NLP - J. Eisner16 Word Segmentation  What does this say?  And what other words are substrings?  Could segment with parsing (how?), but slow.  Given L = a “lexicon” FSA that matches all English words.  How to apply to this problem?  What if Lexicon is weighted?  From unigrams to bigrams?  Smooth L to include unseen words? theprophetsaidtothecity

17 600.465 - Intro to NLP - J. Eisner17 Spelling correction  Spelling correction also needs a lexicon L  But there is distortion …  Let T be a transducer that models common typos and other spelling errors  ance (  ) ence(deliverance,...)  e   (deliverance,...)    e // Cons _ Cons(athlete,...)  rr  r (embarrasş occurrence, …)  ge  dge(privilege, …)  etc.  Now what can you do with L.o. T ?  Should T and L have probabilities?  Want T to include “all possible” errors …

18 600.465 - Intro to NLP - J. Eisner18 Morpheme Segmentation  Let L be a machine that matches all Turkish words  Same problem as word segmentation  Just at a lower level: morpheme segmentation  Turkish word: uygarlaştıramadıklarımızdanmışsınızcasına = uygar+laş+tır+ma+dık+ları+mız+dan+mış+sınız+ca+sı+na (behaving) as if you are among those whom we could not cause to become civilized  Some constraints on morpheme sequence: bigram probs  Generative model – concatenate then fix up joints  stop + -ing = stopping, fly + -s = flies, vowel harmony  Use a cascade of transducers to handle all the fixups  But this is just morphology!  Can use probabilities here too (but people often don’t)

19 600.465 - Intro to NLP - J. Eisner19 More Engineering Applications  Markup  Dates, names, places, noun phrases; spelling/grammar errors?  Hyphenation  Informative templates for information extraction (FASTUS)  Word segmentation (use probabilities!)  Part-of-speech tagging (use probabilities – maybe!)  Translation  Spelling correction / edit distance  Phonology, morphology: series of little fixups? constraints?  Speech  Transliteration / back-transliteration  Machine translation?  Learning …


Download ppt "600.465 - Intro to NLP - J. Eisner1 Finite-State and the Noisy Channel."

Similar presentations


Ads by Google