Download presentation
Presentation is loading. Please wait.
Published byGloria Harper Modified over 8 years ago
1
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS Climate Change: Global Causes and Midwest Consequences Eugene S. Takle, PhD, CCM Professor of Atmospheric Science Department of Geological and Atmospheric Sciences Professor of Agricultural Meteorology Department of Agronomy Faculty Director, University Honors Program Iowa State University Ames, Iowa 50011 gstakle@iastate.edu 21st Annual Environmental Conference and Expo Iowa-Illinois Safety Council 27 September 2007
2
Image courtesy of NASA/GSFC
3
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS Outline Changes in atmospheric carbon dioxide Four components for addressing climate change Climate change for Iowa and the Midwest: adaptation strategy Except where noted as personal views or from the ISU Global Change course or the Iowa Environmental Mesonet, all materials presented herein are from peer-reviewed scientific reports
4
CO 2, CH 4 and temperature records from Antarctic ice core data Source: Vimeux, F., K.M. Cuffey, and Jouzel, J., 2002, "New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction", Earth and Planetary Science Letters, 203, 829-843.
5
CO 2, CH 4 and temperature records from Antarctic ice core data Source: Vimeux, F., K.M. Cuffey, and Jouzel, J., 2002, "New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction", Earth and Planetary Science Letters, 203, 829-843. Natural cycles Pattern repeats about every 100,000 years
6
IPCC Third Assessment Report
7
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS 2007 380 ppm Carbon Dioxide and Temperature
8
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS 2050 550 ppm Carbon Dioxide and Temperature
9
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS “Business as Usual” 950 ppm Carbon Dioxide and Temperature
10
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS “Business as Usual” 950 ppm ? Carbon Dioxide and Temperature
11
http://www.ncdc.noaa.gov/img/climate/research/2006/ann/glob_jan-dec-error-bar_pg.gif
12
Source: IPCC, 2001: Climate Change 2001: The Scientific Basis
14
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS IPCC Fourth Assessment Report Summary for Policy Makers
15
http://www.ncdc.noaa.gov/img/climate/research/2006/ann/glob_jan-dec-error-bar_pg.gif
16
Natural and anthropogenic contributions to global temperature change (Meehl et al., 2004). Observed values from Jones and Moberg 2001. Grey bands indicate 68% and 95% range derived from multiple simulations.
17
Natural cycles
18
Natural and anthropogenic contributions to global temperature change (Meehl et al., 2004). Observed values from Jones and Moberg 2001. Grey bands indicate 68% and 95% range derived from multiple simulations. Not Natural
19
Natural and anthropogenic contributions to global temperature change (Meehl et al., 2004). Observed values from Jones and Moberg 2001. Grey bands indicate 68% and 95% range derived from multiple simulations. Not Natural Highly Likely Not Natural
20
Source: Jerry Meehl, National Center for Atmospheric Research
21
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS IPCC Fourth Assessment Report Summary for Policy Makers Reduced Consumption Energy intensive Energy conserving
22
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS IPCC Fourth Assessment Report Summary for Policy Makers The planet is committed to a warming over the next 50 years regardless of political decisions Energy intensive Energy conserving Reduced Consumption
23
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS IPCC Fourth Assessment Report Summary for Policy Makers Reduced Consumption Energy intensive Energy conserving Adaptation Necessary Mitigation Possible
24
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS Four-Component Approach for Addressing Climate Change Mitigation policies: 2050-2100 –Example: reduction in GHG emissions Adaptation (long-term): 2015-2050 –Example: Developing Iowa’s competitive economic advantage Adaptation (short-term): 2008-2015 –Example: redefining climate “normals” when needed and scientifically justified Scenario planning for Iowa’s “Katrina”: 2007-2100 –Example: Multi-year drought, recurrent floods, combination of both; drought and wildfire EST personal view
25
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS Projected Changes for the Climate of Iowa/Midwest (My tentative assessment) Longer frost-free period (high) Higher average winter temperatures (high) Fewer extreme cold temperatures in winter (high) More extreme high temperatures in summer (medium) Higher nighttime temperatures both summer and winter (high) More (~10%) precipitation (medium) More variability of summer precipitation (high) –More intense rain events and hence more runoff (high) –Higher episodic streamflow (medium) –Longer periods without rain (medium) Higher absolute humidity (high) Stronger storm systems (medium) Reduced annual mean wind speeds (medium) Follows trend of last 25 years and projected by models No current trend but model suggestion or current trend but models inconclusive
26
“Warming Hole” T max (JJA) ˚C
27
PROJECT TO INTERCOMPARE REGIONAL CLIMATE SIMULATIONS For More Information For peer-reviewed evidence supporting everything you have seen in this presentation, see my online Global Change course: http://www.meteor.iastate.edu/gccourse Contact me directly: gstakle@iastate.edu Current research on regional climate and climate change is being conducted at Iowa State Unversity under the Regional Climate Modeling Laboratory http://rcmlab.agron.iastate.edu/ North American Regional Climate Change Assessment Program http://www.narccap.ucar.edu/ For this and other climate change presentations see my personal website: http://www.meteor.iastate.edu/faculty/takle/ Or just Google Eugene Takle
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.