Download presentation
Presentation is loading. Please wait.
Published byVernon Garrett Modified over 9 years ago
1
2.8 Absolute Value Functions Goals:1. Representing absolute value functions 2. Using absolute value functions in real life Given how do you find the vertex, direction graph opens, and the slope of the branches?
2
Absolute Value is defined by:
3
The graph of this piecewise function consists of 2 rays, is V-shaped and opens up. To the left of x=0 the line is y = -x To the right of x = 0 the line is y = x Notice that the graph is symmetric in the y-axis because every point (x,y) on the graph, the point (-x,y) is also on it.
4
y = a |x - h| + k Vertex is @ (h,k) & is symmetrical in the line x=h V-shaped If a< 0 the graph opens down (a is negative) If a>0 the graph opens up (a is positive) The graph is wider if |a| < 1 (fraction < 1) The graph is narrower if |a| > 1 a is the slope to the right of the vertex (…-a is the slope to the left of the vertex)
5
To graph y = a |x - h| + k 1.Plot the vertex (h,k) (set what’s in the absolute value symbols to 0 and solve for x; gives you the x-coord. of the vertex, y-coord. is k.) 2.Use the slope to plot another point to the RIGHT of the vertex. 3.Use symmetry to plot a 3 rd point 4.Complete the graph
6
Graph y = -|x + 2| + 3 1.V = (-2,3) 2.Apply the slope a=-1 to that point 3.Use the line of symmetry x=-2 to plot the 3rd point. 4.Complete the graph
7
Graph y = -|x - 1| + 1
8
Write the equation for:
9
The vertex is @ (0,-3) It has the form: y = a |x - 0| - 3 To find a: substitute the coordinate of a point (2,1) in and solve (or count the slope from the vertex to another point to the right) Remember: a is positive if the graph goes up a is negative if the graph goes down So the equation is: y = 2|x| -3
10
Write the equation for: y = ½|x| + 3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.