Download presentation
1
Transaction Management and Concurrent Control
2
What is a Transaction? Any action that reads from and/or writes to a database may consist of Simple SELECT statement to generate a list of table contents A series of related UPDATE statements to change the values of attributes in various tables A series of INSERT statements to add rows to one or more tables A combination of SELECT, UPDATE, and INSERT statements
3
What is a Transaction? (continued)
A logical unit of work that must be either entirely completed or aborted Successful transaction changes the database from one consistent state to another One in which all data integrity constraints are satisfied Most real-world database transactions are formed by two or more database requests The equivalent of a single SQL statement in an application program or transaction
4
Example Transaction Examine current account balance
Consistent state after transaction No changes made to Database SELECT ACC_NUM, ACC_BALANCE FROM CHECKACC WHERE ACC_NUM = ‘ ’; 6
5
Example Transaction Register credit sale of 100 units of product X to customer Y for $500 Consistent state only if both transactions are fully completed DBMS doesn’t guarantee transaction represents real-world event UPDATE PRODUCT SET PROD_QOH = PROD_QOH WHERE PROD_CODE = ‘X’; UPDATE ACCT_RECEIVABLE SET ACCT_BALANCE = ACCT_BALANCE WHERE ACCT_NUM = ‘Y’; 6
6
Incomplete Transactions
Reasons: An anomaly arises during execution (automatically restart) System crashes An unexpected situation during transaction execution May bring database to inconsistent state
7
Transaction Properties
Atomicity All transaction operations must be completed Incomplete transactions aborted Durability Permanence of consistent database state Serializability Conducts transactions in serial order Important in multi-user and distributed databases Isolation Transaction data cannot be reused until its execution complete 9
8
Transaction Management with SQL
Transaction Support COMMIT ROLLBACK User initiated transaction sequence must continue until: COMMIT statement is reached ROLLBACK statement is reached End of a program reached Program reaches abnormal termination 10
9
Transaction Log Tracks all transactions that update database
May be used by ROLLBACK command May be used to recover from system failure Log stores Record for beginning of transaction Each SQL statement Operation Names of objects Before and after values for updated fields Pointers to previous and next entries Commit Statement 12
10
Transaction Log Example
11
Example Suppose that you are a manufacturer of product ABC, which is composed of parts A, B, C. Each time a new product ABC is created, it must be added to the product inventory, using the PROD_QOH in PRODUCT table. And each time the product is created the parts inventory, using PART_QOH in PART table must be reduced by one each of parts, A, B, and C. PART PRODUCT PART_CODE PART_QOH A 567 B 98 C 549 PROD_CODE PROD_QOH ABC 1205
12
Example (Cont’d) Given the information, answer:
How many database requests can you identify for an inventory update for both PRODUCT and PART? Using SQL, write each database request you have identified above. Write the complete transactions. Write the transaction log, using the template in slide 11.
13
Concurrency Control Coordinates simultaneous transaction execution in multiprocessing database Ensure serializability of transactions in multiuser database environment Potential problems in multiuser environments Lost updates Uncommitted data Inconsistent retrievals 14
14
Normal Execution of Two Transactions
15
Lost Updates
16
More Example
17
Correct Execution of Two Transactions
18
An Uncommitted Data Problem
19
Retrieval During Update
20
Transaction Results: Data Entry Correction
21
Inconsistent Retrievals
22
Example A department store runs a multiuser DBMS on a local area network file server which does not enforce concurrency control. One customer has a balance due of $250 when the following three transactions related to this customer were processed at the same time: Payment of $250 Purchase on credit of $100 Merchandise return of $50. Each transaction reads the customer record when the balance was $250. the updated record was returned to the database in the order shown above. What balance will be for the customer after the last transaction was completed?
23
The Scheduler Establishes order of concurrent transaction execution
Interleaves execution of database operations to ensure serializability Bases actions on concurrency control algorithms Locking Time stamping Ensures efficient use of computer’s CPU 23
24
Read/Write Conflict Scenarios:
25
Concurrency Control with Locking Methods
Lock guarantees current transaction exclusive use of data item Acquires lock prior to access Lock released when transaction is completed DBMS automatically initiates and enforces locking procedures Managed by lock manager Lock granularity indicates level of lock use 25
26
Locking Mechanisms Locking level:
Database – used during database updates Table – used for bulk updates Block or page – very commonly used Row – only requested row; fairly commonly used Field – requires significant overhead; impractical
27
Locking Granularity Granularity refers to the level of the database item locked. A trade-off between overhead and waiting. Holding locks at a fine level decreases waiting among users but increase the system overhead. Holding locks at a coarser level reduces the number of locks but increases the amount of waiting.
28
A Database-Level Locking Sequence
29
An Example of a Table-Level Lock
30
Example of a Page-Level Lock
31
An Example of a Row-Level Lock
32
Binary Locks Two states Locked objects unavailable to other objects
Unlocked (0) Locked objects unavailable to other objects Unlocked objects open to any transaction Transaction unlocks object when complete 31
33
An Example of a Binary Lock
34
Shared/Exclusive Locks
Exists when concurrent transactions granted READ access Produces no conflict for read-only transactions Issued when transaction wants to read and exclusive lock not held on item Exclusive Exists when access reserved for locking transaction Used when potential for conflict exists Issued when transaction wants to update unlocked data
35
Shared/Exclusive Locks (Cont’d)
_ No Yes T2 T1
36
Two-Phase Locking to Ensure Serializability
Defines how transactions acquire and relinquish locks Guarantees serializability, but it does not prevent deadlocks Growing phase, in which a transaction acquires all the required locks without unlocking any data Shrinking phase, in which a transaction releases all locks and cannot obtain any new lock
37
Two-Phase Locking to Ensure Serializability (continued)
Governed by the following rules: Two transactions cannot have conflicting locks No unlock operation can precede a lock operation in the same transaction No data are affected until all locks are obtained—that is, until the transaction is in its locked point
38
Two-Phase Locking Protocol
39
Deadlocks Condition that occurs when two transactions wait for each other to unlock data Possible only if one of the transactions wants to obtain an exclusive lock on a data item No deadlock condition can exist among shared locks Control through Prevention Detection Avoidance
40
How a Deadlock Condition Is Created
41
Example on Concurrency Control
Given schedule S1 as follows, and the locks won’t be released until commit. Is there any deadlock in S1 using Shared/Exclusive lock. T1 T2 T3 R(A) W(B) W(A) Commit A, B Commit B
42
More Example T1 T2 T3 R(C) R(B) W(B) R(A) W(A) W(C) Commit A
Commit A, B & C Commit B
43
Concurrency Control with Time Stamping Methods
Assigns a global unique time stamp to each transaction Produces an explicit order in which transactions are submitted to the DBMS Uniqueness Ensures that no equal time stamp values can exist Monotonicity Ensures that time stamp values always increase
44
Wait/Die and Wound/Wait Schemes
Older transaction waits and the younger is rolled back and rescheduled Wound/wait Older transaction rolls back the younger transaction and reschedules it
45
Wait/Die and Wound/Wait Concurrency Control Schemes
46
Example Concurrency control is implemented based on time stamping method. Consider the following schedule: T1 T2 R(A) W(A) W(B) W(C) R(C)
47
Concurrency Control with Optimistic Methods
Optimistic approach Based on the assumption that the majority of database operations do not conflict Does not require locking or time stamping techniques Transaction is executed without restrictions until it is committed Phases are read, validation, and write
48
Better Performance than Locking
49
Example T1 T2 R(A) W(A) R(B) commit
50
Database Recovery Management
Restores database from a given state, usually inconsistent, to a previously consistent state Based on the atomic transaction property All portions of the transaction must be treated as a single logical unit of work, in which all operations must be applied and completed to produce a consistent database If transaction operation cannot be completed, transaction must be aborted, and any changes to the database must be rolled back (undone)
51
Transaction Recovery Deferred write Write-through
Transaction operations do not immediately update the physical database Only the transaction log is updated Database is physically updated only after the transaction reaches its commit point using the transaction log information Write-through Database is immediately updated by transaction operations during the transaction’s execution, even before the transaction reaches its commit point
52
Example Describe the restart work if transaction T1 is committed after the checkpoint but prior to the failure. Assume that the recovery manager uses the deferred update approach The write though approach Backup Checkpoint Failure T1
53
Review Transaction property Transaction log
Potential problems in multiuser environments Different locking methods and how they work Database recovery management
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.