Download presentation
Presentation is loading. Please wait.
Published byAudra Boyd Modified over 9 years ago
1
Class 2: Graph Theory IST402
2
Can one walk across the seven bridges and never cross the same bridge twice? Network Science: Graph Theory THE BRIDGES OF KONIGSBERG http://www.numericana.com/answer/graphs.htm 1735: Euler’s theorem: (a)If a graph has more than two nodes of odd degree, there is no path. (b)If a graph is connected and has no odd degree nodes, it has at least one path.
3
Networks and graphs Section 2
4
COMPONENTS OF A COMPLEX SYSTEM Network Science: Graph Theory components: nodes, vertices N interactions: links, edges L system: network, graph (N,L)
5
Degree, Average Degree and Degree Distribution Section 2.3
6
Node degree: the number of links connected to the node. NODE DEGREES Undirected In directed networks we can define an in-degree and out-degree. The (total) degree is the sum of in- and out-degree. Source: a node with k in = 0; Sink: a node with k out = 0. Directed A G F B C D E A B
7
N – the number of nodes in the graph Network Science: Graph Theory AVERAGE DEGREE Undirected Directed A F B C D E j i
8
Network Science: Graph Theory Average Degree
9
Degree distribution P(k): probability that a randomly chosen node has degree k N k = # nodes with degree k P(k) = N k / N ➔ plot DEGREE DISTRIBUTION
10
Log-log plot
11
Discrete Representation: p k is the probability that a node has degree k. Continuum Description: p(k) is the pdf of the degrees, where represents the probability that a node’s degree is between k 1 and k 2. Normalization condition: where K min is the minimal degree in the network. Network Science: Graph Theory DEGREE DISTRIBUTION
12
Links: undirected (symmetrical) Graph: Directed links : URLs on the www phone calls metabolic reactions Network Science: Graph Theory UNDIRECTED VS. DIRECTED NETWORKS UndirectedDirected A B D C L M F G H I Links: directed (arcs). Digraph = directed graph: Undirected links : coauthorship links Actor network protein interactions An undirected link is the superposition of two opposite directed links. A G F B C D E
13
Section 2.2Reference Networks
14
Question 4 Q4: Adjacency Matrices
15
Adjacency matrix Section 2.4
16
A ij =1 if there is a link between node i and j A ij =0 if nodes i and j are not connected to each other. Network Science: Graph Theory ADJACENCY MATRIX Note that for a directed graph (right) the matrix is not symmetric. 4 2 3 1 2 3 1 4 if there is a link pointing from node j and i if there is no link pointing from j to i.
17
ADJACENCY MATRIX AND NODE DEGREES Undirected 2 3 1 4 Directed 4 2 3 1
18
a b c d e f g h a 0 1 0 0 1 0 1 0 b 1 0 1 0 0 0 0 1 c 0 1 0 1 0 1 1 0 d 0 0 1 0 1 0 0 0 e 1 0 0 1 0 0 0 0 f 0 0 1 0 0 0 1 0 g 1 0 1 0 0 0 0 0 h 0 1 0 0 0 0 0 0 ADJACENCY MATRIX Network Science: Graph Theory b e g a c f h d
19
ADJACENCY MATRICES ARE SPARSE Network Science: Graph Theory
20
More on Matrixology
21
Question 5 Q5: Sparsness
22
Real networks are sparse Section 4
23
The maximum number of links a network of N nodes can have is: A graph with degree L=L max is called a complete graph, and its average degree is =N-1 Network Science: Graph Theory COMPLETE GRAPH
24
Most networks observed in real systems are sparse: L << L max or <<N-1. WWW (ND Sample): N=325,729;L=1.4 10 6 L max =10 12 =4.51 Protein (S. Cerevisiae): N= 1,870;L=4,470L max =10 7 =2.39 Coauthorship (Math): N= 70,975; L=2 10 5 L max =3 10 10 =3.9 Movie Actors: N=212,250; L=6 10 6 L max =1.8 10 13 =28.78 (Source: Albert, Barabasi, RMP2002) Network Science: Graph Theory REAL NETWORKS ARE SPARSE
25
ADJACENCY MATRICES ARE SPARSE Network Science: Graph Theory
26
The maximum number of links a network of N nodes can have is: Network Science: Graph Theory METCALFE’S LAW
27
WEIGHTED AND UNWEIGHTED NETWORKS Section 2.6
28
WEIGHTED AND UNWEIGHTED NETWORKS
29
The maximum number of links a network of N nodes can have is: Network Science: Graph Theory METCALFE’S LAW
30
Question 5 Q6: Bipartite Networks
31
BIPARTITE NETWORKS Section 2.7
32
bipartite graph (or bigraph) is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets.graphdisjoint setsindependent sets Examples: Hollywood actor network Collaboration networks Disease network (diseasome) BIPARTITE GRAPHS Network Science: Graph Theory
33
Gene network GENOME PHENOME DISEASOME Disease network Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007) GENE NETWORK – DISEASE NETWORK Network Science: Graph Theory
34
HUMAN DISEASE NETWORK
35
Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, A.-L. Barabási Flavor network and the principles of food pairing, Scientific Reports 196, (2011). Ingredient-Flavor Bipartite Network Network Science: Graph Theory
37
PATHOLOGY Section 2.8
38
A path is a sequence of nodes in which each node is adjacent to the next one P i0,in of length n between nodes i 0 and i n is an ordered collection of n+1 nodes and n links In a directed network, the path can follow only the direction of an arrow. Network Science: Graph Theory PATHS
39
The distance (shortest path, geodesic path) between two nodes is defined as the number of edges along the shortest path connecting them. *If the two nodes are disconnected, the distance is infinity. In directed graphs each path needs to follow the direction of the arrows. Thus in a digraph the distance from node A to B (on an AB path) is generally different from the distance from node B to A (on a BCA path). Network Science: Graph Theory DISTANCE IN A GRAPH Shortest Path, Geodesic Path D C A B D C A B
40
N ij,number of paths between any two nodes i and j: Length n=1: If there is a link between i and j, then A ij =1 and A ij =0 otherwise. Length n=2: If there is a path of length two between i and j, then A ik A kj =1, and A ik A kj =0 otherwise. The number of paths of length 2: Length n: In general, if there is a path of length n between i and j, then A ik …A lj =1 and A ik …A lj =0 otherwise. The number of paths of length n between i and j is * * holds for both directed and undirected networks. Network Science: Graph Theory NUMBER OF PATHS BETWEEN TWO NODES Adjacency Matrix
41
Distance between node 0 and node 4: 1.Start at 0. Network Science: Graph Theory FINDING DISTANCES: BREADTH FIRST SEARCH Network Science: Graph Theory 1 11 1 0
42
Distance between node 0 and node 4: 1.Start at 0. 2.Find the nodes adjacent to 1. Mark them as at distance 1. Put them in a queue. Network Science: Graph Theory FINDING DISTANCES: BREADTH FIRST SEARCH 011 1
43
Distance between node 0 and node 4: 1.Start at 0. 2.Find the nodes adjacent to 0. Mark them as at distance 1. Put them in a queue. 3.Take the first node out of the queue. Find the unmarked nodes adjacent to it in the graph. Mark them with the label of 2. Put them in the queue. Network Science: Graph Theory FINDING DISTANCES: BREADTH FIRST SEARCH 011 1 2 2 22 2 Network Science: Graph Theory 1 1
44
Distance between node 0 and node 4: 1.Repeat until you find node 4 or there are no more nodes in the queue. 2.The distance between 0 and 4 is the label of 4 or, if 4 does not have a label, infinity. FINDING DISTANCES: BREADTH FIRST SEARCH
45
Diameter: d max the maximum distance between any pair of nodes in the graph. Average path length/distance,, for a connected graph: where d ij is the distance from node i to node j In an undirected graph d ij =d ji, so we only need to count them once: Network Science: Graph Theory NETWORK DIAMETER AND AVERAGE DISTANCE
46
Network Science: Graph Theory PATHOLOGY: summary 2 2 5 5 4 4 3 3 1 1 Shortest Path The path with the shortest length between two nodes (distance).
47
Network Science: Graph Theory PATHOLOGY: summary 2 2 5 5 4 4 3 3 1 1 Diameter 2 2 5 5 4 4 3 3 1 1 Average Path Length The longest shortest path in a graph The average of the shortest paths for all pairs of nodes.
48
Network Science: Graph Theory PATHOLOGY: summary 2 2 5 5 4 4 3 3 1 1 Cycle 2 2 5 5 4 4 3 3 1 1 Self-avoiding Path A path with the same start and end node. A path that does not intersect itself.
49
Network Science: Graph Theory PATHOLOGY: summary 2 2 5 5 4 4 3 3 1 1 2 2 5 5 4 4 3 3 1 1 Eulerian Path Hamiltonian Path A path that visits each node exactly once. A path that traverses each link exactly once.
50
CONNECTEDNESS Section 2.9
51
Connected (undirected) graph: any two vertices can be joined by a path. A disconnected graph is made up by two or more connected components. Bridge: if we erase it, the graph becomes disconnected. Largest Component: Giant Component The rest: Isolates Network Science: Graph Theory CONNECTIVITY OF UNDIRECTED GRAPHS D C A B F F G D C A B F F G
52
The adjacency matrix of a network with several components can be written in a block- diagonal form, so that nonzero elements are confined to squares, with all other elements being zero: Network Science: Graph Theory CONNECTIVITY OF UNDIRECTED GRAPHS Adjacency Matrix
53
Strongly connected directed graph: has a path from each node to every other node and vice versa (e.g. AB path and BA path). Weakly connected directed graph: it is connected if we disregard the edge directions. Strongly connected components can be identified, but not every node is part of a nontrivial strongly connected component. In-component : nodes that can reach the scc, Out-component : nodes that can be reached from the scc. Network Science: Graph Theory CONNECTIVITY OF DIRECTED GRAPHS D C A B F G E E C A B G F D
54
Section 2.9
55
Clustering coefficient Section 10
56
Clustering coefficient: what fraction of your neighbors are connected? Node i with degree k i C i in [0,1] Network Science: Graph Theory CLUSTERING COEFFICIENT Watts & Strogatz, Nature 1998.
57
Clustering coefficient: what fraction of your neighbors are connected? Node i with degree k i C i in [0,1] Network Science: Graph Theory CLUSTERING COEFFICIENT Watts & Strogatz, Nature 1998.
58
summary Section 11
59
Degree distribution: P(k) Path length: Clustering coefficient: Network Science: Graph Theory THREE CENTRAL QUANTITIES IN NETWORK SCIENCE
60
3 Network Science: Graph Theory GRAPHOLOGY 1 UndirectedDirected 1 4 2 3 2 1 4 Actor network, protein-protein interactionsWWW, citation networks
61
Network Science: Graph Theory GRAPHOLOGY 2 Unweighted (undirected) Weighted (undirected) 3 1 4 2 3 2 1 4 protein-protein interactions, wwwCall Graph, metabolic networks
62
Network Science: Graph Theory GRAPHOLOGY 3 Self-interactionsMultigraph (undirected) 3 1 4 2 3 2 1 4 Protein interaction network, wwwSocial networks, collaboration networks
63
Network Science: Graph Theory GRAPHOLOGY 4 Complete Graph (undirected) 3 1 4 2 Actor network, protein-protein interactions
64
Network Science: Graph Theory GRAPHOLOGY: Real networks can have multiple characteristics WWW > directed multigraph with self-interactions Protein Interactions > undirected unweighted with self-interactions Collaboration network > undirected multigraph or weighted. Mobile phone calls > directed, weighted. Facebook Friendship links > undirected, unweighted.
65
A. Degree distribution: p k B. Path length: C. Clustering coefficient: Network Science: Graph Theory THREE CENTRAL QUANTITIES IN NETWORK SCIENCE
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.