Download presentation
Presentation is loading. Please wait.
Published byRosemary Fowler Modified over 9 years ago
1
Prof R T KennedyPOWER ELECTRONICS 21 EET 423 POWER ELECTRONICS -2
2
Prof R T KennedyPOWER ELECTRONICS 22 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL I out a b V out
3
Prof R T KennedyPOWER ELECTRONICS 23 BUCK CONVERTER CIRCUIT VOLTAGES E i n V out V ds a b V L,a-b C R L V fwd
4
Prof R T KennedyPOWER ELECTRONICS 24 SUB INTERVAL EQUIVALENT CIRCUITS V ds = 0 a b V L,a-b = E in -V out E i n C R V out L MOSFET ON RECTIFIER OFF V fwd = -E in r ds,on
5
Prof R T KennedyPOWER ELECTRONICS 25 SUB INTERVAL EQUIVALENT CIRCUITS E i n C R a b V out V fwd = 0 V ds = E in MOSFET OFF RECTIFIER ON L a b V L,a-b = -V out a b
6
Prof R T KennedyPOWER ELECTRONICS 26 E in =V ds +(- V fwd ) V L + V out = -V fwd 0 0 0 0 0 0 E in VLVL V out V fwd V ds 0 V gs
7
Prof R T KennedyPOWER ELECTRONICS 27 E in = V ds + (-V fwd ) 0 0 0 0 0 0 E in VLVL V out V fwd V ds 0 V gs - V fwd
8
Prof R T KennedyPOWER ELECTRONICS 28 SMPS OPERATION QUANTIZED POWER/ENERGY TRANSFER VOLTAGE REGULATION
9
Prof R T KennedyPOWER ELECTRONICS 29 VOLTAGE TRANSFER FUNCTION ANALYSIS ENERGY BALANCE ENERGY BALANCE POWER BALANCE POWER BALANCE VOLT-TIME INTEGRAL VOLT-TIME INTEGRAL
10
Prof R T KennedyPOWER ELECTRONICS 210 ‘IDEAL’ BUCK ANALYSIS CCM ENERGY BALANCE APPROACH INDUCTOR CURRENT I L,M I L,m I L,av = I out 0 t
11
Prof R T KennedyPOWER ELECTRONICS 211 SUB INTERVAL -1: MOSFET ON E i n C R L OFF a b ON ENERGY STORED INPUT ENERGY LOAD ENERGY from source
12
Prof R T KennedyPOWER ELECTRONICS 212 SUB INTERVAL -2: RECTIFIER ON E i n C R L ON a b OFF ENERGY Discharge NO INPUT ENERGY LOAD ENERGY from inductor
13
Prof R T KennedyPOWER ELECTRONICS 213 D sw E in V out
14
Prof R T KennedyPOWER ELECTRONICS 214 ‘IDEAL’ BUCK ANALYSIS CCM POWER BALANCE APPROACH INPUT CURRENT = MOSFET CURRENT I in,av = I ds,av I L,m I L,M I out 0 D sw T D fwd T I in t
15
Prof R T KennedyPOWER ELECTRONICS 215 FARADAY’S VOLT-TIME INTEGRAL INDUCTOR VOLTAGE V1V1 t1t1 0 INDUCTOR CURRENT t2t2 V2V2 0 t t I m I M T current start and finish at same value EQUAL AREAS
16
Prof R T KennedyPOWER ELECTRONICS 216 ‘IDEAL’ BUCK ANALYSIS CCM VOLT-TIME INTEGRAL APPROACH INDUCTOR VOLTAGE D sw T D fwd T 0 ILIL VLVL 0 E in -V out -V out t area B area A
17
Prof R T KennedyPOWER ELECTRONICS 217 ‘IDEAL’ BUCK ANALYSIS CCM VOLT-TIME INTEGRAL APPROACH INDUCTOR VOLTAGE
18
Prof R T KennedyPOWER ELECTRONICS 218 ‘ideal’ BUCK CONVERTER CCM voltage & current waveforms refer to msw notelet refer to msw notelet
19
Prof R T KennedyPOWER ELECTRONICS 219 V out 0 0 D sw TD fwd T D fwd = 1-D sw 0 0 0 0 0 0 0 0 0 V gs I out IcIc ILIL I ds I fwd E in V ds V fwd VLVL V out E i n R I out IC IC L C I ds IL IL V ds I out I fwd V fwd V gs f sw VL VL
20
Prof R T KennedyPOWER ELECTRONICS 220 INDUCTOR CURRENT WAVEFORMS CCM or DCM operational mode CCM or DCM operational mode component current stress component current stress capacitor ripple current capacitor ripple current output voltage ripple output voltage ripple converter efficiency converter efficiency closed loop regulation performance closed loop regulation performance
21
Prof R T KennedyPOWER ELECTRONICS 221 INDUCTOR CURRENT v INDUCTANCE REDUCTION in L D sw TD fwd T 0 0 I out E in - V out -V out VLVL ILIL t
22
Prof R T KennedyPOWER ELECTRONICS 222 INDUCTOR CURRENT v INDUCTANCE REDUCTION in L D sw TD fwd T 0 0 I out E in -V out -V out VLVL ILIL t increased I sw,max I fwd,max I C,ripple V out,ripple
23
Prof R T KennedyPOWER ELECTRONICS 223 INDUCTOR CURRENT
24
Prof R T KennedyPOWER ELECTRONICS 224 INDUCTOR CURRENT 0 ILIL t I out D sw = 0.2 D sw = 0.5 D sw = 0.8 D sw > 0.5 D sw < 0.5 D sw = 0.5
25
Prof R T KennedyPOWER ELECTRONICS 225 INDUCTOR CURRENT 0 ILIL t UPSLOPE DOWNSLOPE
26
Prof R T KennedyPOWER ELECTRONICS 226 INDUCTOR PEAK-PEAK RIPPLE CURRENT
27
Prof R T KennedyPOWER ELECTRONICS 227 ILIL ILIL ILIL t 0 0 0 t t
28
Prof R T KennedyPOWER ELECTRONICS 228 ILIL ILIL ILIL t 0 0 0 t t
29
Prof R T KennedyPOWER ELECTRONICS 229 ILIL ILIL ILIL t 0 0 0 t t
30
Prof R T KennedyPOWER ELECTRONICS 230 ‘IDEAL’ BUCK CCM DEVICE CURRENT
31
Prof R T KennedyPOWER ELECTRONICS 231 ‘IDEAL’ BUCK CCM DEVICE CURRENT
32
Prof R T KennedyPOWER ELECTRONICS 232 ‘IDEAL’ BUCK CCM TRANSISTOR CURRENT
33
Prof R T KennedyPOWER ELECTRONICS 233 ‘IDEAL’ BUCK CCM RECTIFIER CURRENT
34
Prof R T KennedyPOWER ELECTRONICS 234 OUTPUT EFFECTS E i n C L V out = 0 s/c I in t 0
35
Prof R T KennedyPOWER ELECTRONICS 235 OUTPUT EFFECTS E i n C L V out E in o/c
36
Prof R T KennedyPOWER ELECTRONICS 236 POWER - UP EFFECT E i n C R V out V c = 0 L
37
Prof R T KennedyPOWER ELECTRONICS 237 POWER - DOWN EFFECT E i n C R V out L
38
Prof R T KennedyPOWER ELECTRONICS 238 CCM-DCM BOUNDARY
39
Prof R T KennedyPOWER ELECTRONICS 239 CCM-DCM BOUNDARY boundary
40
Prof R T KennedyPOWER ELECTRONICS 240 CCM-DCM BOUNDARY boundary CCM DCM
41
Prof R T KennedyPOWER ELECTRONICS 241 CCM / DCM determined by R CCM-DCM BOUNDARY L D sw f sw constant to ensure a desired CCM does not transfer to DCM specify a minimum load current (maximum R) avoid open circuit operation CCM DCM INCREASE R ‘light loading’
42
Prof R T KennedyPOWER ELECTRONICS 242 CCM / DCM determined by L CCM-DCM BOUNDARY R D sw f sw constant to ensure a desired CCM does not transfer to DCM design for CMM at lowest inductance including L v I CCM DCM DECREASE L
43
Prof R T KennedyPOWER ELECTRONICS 243 CCM / DCM determined by f sw CCM-DCM BOUNDARY R D sw f sw constant to ensure a desired CCM does not transfer to DCM design for CMM at lowest frequency CCM DCM DECREASE f sw
44
Prof R T KennedyPOWER ELECTRONICS 244 CCM / DCM determined by D sw CCM-DCM BOUNDARY L R f sw constant to ensure a desired CCM does not transfer to DCM design for CMM at lowest duty cycle CCM DCM DECREASE D sw
45
Prof R T KennedyPOWER ELECTRONICS 245 LINE & LOAD REGULATION DCM CCM
46
Prof R T KennedyPOWER ELECTRONICS 246 LINE & LOAD REGULATION DCM CCM
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.