Presentation is loading. Please wait.

Presentation is loading. Please wait.

Monte Carlo methods applied to magnetic nanoclusters L. Balogh, K. M. Lebecki, B. Lazarovits, L. Udvardi, L. Szunyogh, U. Nowak Uppsala, 8 February 2010.

Similar presentations


Presentation on theme: "Monte Carlo methods applied to magnetic nanoclusters L. Balogh, K. M. Lebecki, B. Lazarovits, L. Udvardi, L. Szunyogh, U. Nowak Uppsala, 8 February 2010."— Presentation transcript:

1 Monte Carlo methods applied to magnetic nanoclusters L. Balogh, K. M. Lebecki, B. Lazarovits, L. Udvardi, L. Szunyogh, U. Nowak Uppsala, 8 February 2010 balogh@phy.bme.hu

2 Deposited magnetic nanoparticles Introduction magnetic cluster, e.g., Cr, Co, 1−100 atoms non-magnetic host, e.g., Cu (001), Au (111) Magnetic ground state? Thermal properties: magnetization, reversal? Monte Carlo (MC) simulation based on fully relativistic Green's function method Simple description: Heisenberg-model We need the model-parameters...

3 Classical, 3-dimensional Heisenberg-model Heisenberg-model J 0: antiferromagnetic Example: L x L x L cubic lattice: Model: basic, well-known, fast simulation.

4 → Tensorial coupling constants + spin-orbit coupling (S.O.C.) isotropicsymmetric antisymmetric J ij = 144.9 meV |D ij | = 1.78 meV d i ≈ 0.2 meV → On-site uniaxial anisotropy A. Antal et. al., Phys. Rev. B 77, 174429 (2008) Dzyaloshinsky−Moriya interaction: Cr trimer on Au (111)

5 How to calculate J ij -s? atoms: potential scattering: t-operator propagation: Green's function scattering path operator (SPO) i i j i k j

6 Embedding Lloyd's formula B. Lazarovits, Electronic and magnetic properties of nanostructures (Dissertation, 2003) L. Udvardi et. al., Phys. Rev. B 68, 104436 (2003) coming soon...

7 Example: Co 16 cluster on Cu (001) surface Clusters L. Balogh et. al., J. Phys.: Conference Series (in press) Different coupling constants!

8 Let us use the Heisenberg picture Problem Cluster-average Simulation result:

9 Isotropic and uniform phase space sampling Metropolis algorithm is used "Driving force": Lloyd-energy Simple MC starting configuration (i) sampling (f) SKKR ? Metropolis- algorithm

10 Restricted Other sampling methods Multiple sampling  temperature depenent simulation: does not work because of too strongly correlated states  searcing for the ground state: can be efficient  Optimization of the cone angle (not imple- mented yet); see: U. Nowak, Phys. Rev. Lett. 84 163 (1999)  Possible use of Taylor series fixed, small cone adv.: efficient at low tempetarure (ground state!) disadv.: not effective at high temperature; disadv.: unclear effect on the specific heat

11 Instead of using an a priori model, we use the Lloyd- energy of the SKKR calculation to drive a MC simulation Temperature dependent quantities are accessible, and agree with an appropriate Heisenberg-model Searching for the ground state can be efficient Summary

12 Parallelization (recent version): each temperature point on different computers  adv.: easy, efficient ("poor guy's supercomputer")  disadv.: vaste time on each thermalization  possible solution: "Heisenberg-engine" Future plans  STM structure ground state: simulated annealing  Reorganize the inversion of the τ -matrix: in-the-place inversion + changing the configuration together Bonus slide


Download ppt "Monte Carlo methods applied to magnetic nanoclusters L. Balogh, K. M. Lebecki, B. Lazarovits, L. Udvardi, L. Szunyogh, U. Nowak Uppsala, 8 February 2010."

Similar presentations


Ads by Google