Presentation is loading. Please wait.

Presentation is loading. Please wait.

Simulation Project Paper: Resolving the thermal challenges for

Similar presentations


Presentation on theme: "Simulation Project Paper: Resolving the thermal challenges for"— Presentation transcript:

1 Simulation Project Paper: Resolving the thermal challenges for
silicon microring resonator devices MyungJin Shin

2 Outline Paper Summary Simulation Target Device Structure
Reducing Thermal Dependence Device Structure Simulation Result Additional Simulation (Heater Simulation) Conclusion

3 Resolution for Temperature Sensitivity
Reduce thermal dependence (athermal devices) No additional active power Difficult to fabricate Laser source: fixed wavelength & laser stability throughout optical link Actively maintain local temperature (control based circuit) Typical control-based systems needed (heaters, PDs etc.) Additional active power consumption Laser source: no constraints are needed

4 Athermal Devices Main idea: decrease temperature-dependence of the microring resonator Negative thermo-optic coefficient(TOC) cladding Compensating thermal sensitivity by MZM

5 Simulation Goal & Principle
Reduce temperature dependence using negative thermal-optic material Effective index of waveguide Γ: confinement factor for each materials

6 Using Negative Thermal-Optic Material
3 different negative TOC material Polymer material for cladding Temperature weakness, chemical instability Hard to fabricate on CMOS-production cycle Including photosensitive material with polymer to tune the TO after fabrication TiO2 for cladding material CMOS-compatible 2 different ways for temperature variation Changing room temperature Changing temperature by heater

7 Device Structure Waveguide width: 250nm ~ 450nm
Waveguide height: 250nm Etch depth: 150nm ~250nm TiO2 oxygen content: 12% nTiO2: 2.42, TOC: x 10-4/k Ref: Djordjevic SS, Shang K, Guan B, Cheung ST, Liao L, Basak J, Liu HF, Yoo SJ. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt Express 2013;21(12):

8 MODE Solution Simulation
New version of MODE Solution include n = nref + δn(t) Thermal dependent material is added (Si, SiO2, TiO2) Thermo-optic coefficient Si: 1.8 x10-4(/K) SiO2: 1x 10-5(/K) TiO2(O2_12%): x10-4(/K)

9 Comparison Between SiO2 & TiO2
Room Temperature: 300 ~310K (interval: 0.5K) Waveguide width: 250nm Etch depth: 200nm TiO2 Si SiO2 SiO2 cladding TiO2 cladding 1.34x10-4(/K) -4.5x10-5(/K)

10 Different Etch Depth Waveguide width: 250nm Etch depth ↑  Γcore ↓
Etch depth: 150nm Etch depth: 200nm Etch depth: 250nm

11 Different Waveguide Width
Etch depth: 200nm Waveguide width ↑  Γcore ↑ Width: 250nm Width: 300nm Width: 350nm

12 Heater Simulation Workflow

13 Temperature Distribution
300K ~ 310K (0.5K interval) at waveguide 2μm

14 Temperature Imported MODE Solution
Waveguide width: 250nm Etch depth: 200nm 300K ~ 310K (0.5K interval) at waveguide Upper cladding experience higher temperature variation compare to WG  negative TiO2 TOC affects more than Si TOC

15 Summary Effective index variation is simulated with TiO2 cladding
Effective index variation is decided by TOC & Γ for each core & cladding Optimized athermal waveguide with TiO2 (12% O2) cladding Waveguide width: 300nm Etch depth: 200nm Location of heater can affect temperature dependence of effective index

16 Simulation Project Paper: Resolving the thermal challenges for
silicon microring resonator devices


Download ppt "Simulation Project Paper: Resolving the thermal challenges for"

Similar presentations


Ads by Google