Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ulrich Abelein, Mathias Born, Markus Schindler, Andreas Assmuth, Peter Iskra, Torsten Sulima, Ignaz Eisele Doping Profile Dependence of the Vertical Impact.

Similar presentations


Presentation on theme: "Ulrich Abelein, Mathias Born, Markus Schindler, Andreas Assmuth, Peter Iskra, Torsten Sulima, Ignaz Eisele Doping Profile Dependence of the Vertical Impact."— Presentation transcript:

1 Ulrich Abelein, Mathias Born, Markus Schindler, Andreas Assmuth, Peter Iskra, Torsten Sulima, Ignaz Eisele Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance Nano and Giga Challenges in Electronics and Photonics NGC 2007 Phoenix, Arizona, USA 16 March 2007

2 NGC 2007 Ulrich Abelein1 Overview Motivation Vertical Impact Ionisation MOSFET (IMOS): –Device Concept –Influence of Doping Profiles Electrical Characterization Summary and Outlook

3 NGC 2007 Ulrich Abelein2 Motivation Conventional MOSFET: Subthreshold slope S = dV G /d(logI D ) is diffusion limited.  min S = kT/q · ln10 = 60 mV/dec @ 300 K Minimum static leakage current I LEAK : I LEAK = I D (V T ) · 10 -V T /S Shrinking the feature size according to Moore‘s Law makes a reduction of V T necessary.  I LEAK  Solution  Reducing S below the kT/q limit!  Achievable by gate controlled impact ionisation  Impact Ionisation MOSFET (IMOS)

4 NGC 2007 Ulrich Abelein3 Device Concept – Device Structure n+ Si source n+ Si drain i- Si p+ delta layer Gate oxide (4.5 nm) Gate oxide (4.5 nm) Drain contact n+ Poly Gate contact Source contact Spacer Schematic drawing of the vertical IMOS (above) and SIMS profile of the mesa layer stack (left hand side)

5 NGC 2007 Ulrich Abelein4 Device Concept – Simulation Results n+ Si source n+ Si drain i- Si p+ delta layer Gate oxide Drain contact n+ Poly Gate contact Source contact Spacer - -2 0 1 Energy in eV 10 10 20 10 30 Ionisation rate in pairs / (cm 3  s) 0 80 Distance in nm Drain Source V GS =V DS =0 V V GS =0 V; V DS =2 V V GS = V DS =2 V  p+ delta barrier lowered by gate field  High field between p+ delta layer and drain causes impact ionisation Simulations of the electric field and the ionisation rate in the channel region

6 NGC 2007 Ulrich Abelein5 Device Concept – Operating Modes V DS < 1.25 V  Conventional MOSFET mode 2.2 V > V DS > 1.25 V  Impact Ionization Mode  Holes generated by impact ionization charge the body. Dynamic lowering of V T ! V DS > 2.2 V  Bipolar Mode  Parasitic bipolar transistor contributes to I D W = 2µm

7 NGC 2007 Ulrich Abelein6 Device Concept – Operating Modes V DS < 1.25 V  Conventional MOSFET mode V DS > 1.25 V  Beginning of significant impact ionziation  Holes generated by impact ionization charge the body  Dynamic lowering of V T  S is reduced below kT/q W = 2 µm

8 NGC 2007 Ulrich Abelein7 Influence of Doping Profiles Unintentional changes in doping profiles due to diffusion!  p+ delta layer doping diffuses into intrinsic zones! Diffusion   Sharper delta layer, larger barrier, higher eelctric fields!  Impact Ionization rates  (at const. V DS )  Lower S due to increased body charge for low V DS Diffusion   Lower barrier  Switch on voltage of parasitic bipolar transistor   Extremley low S due to current amplification  Hysteresis in input characteristics

9 NGC 2007 Ulrich Abelein8 Experimental Results – Doping Profiles Using 750 °C and 800 °C gate oxide process: Decreasing of boron diffusion for 750 °C  Maximum doping level increased by a factor of 3  Larger barrier!

10 NGC 2007 Ulrich Abelein9 Electrical Characerization – Output Characteristics Low thermal budget sample  Impact ionization mode begins at lower voltage  Later transistion to bipolar mode  V DS = 2.25 V LT sample in Impact Ioniziation mode HT sample in bipolar mode W = 2 µm

11 NGC 2007 Ulrich Abelein10 Electrical Characerization – Input Characteristics V DS = 2.25 V  LT sample in Impact Ioniziation mode  S = 4 mV/dec  No hysteresis! W = 2 µm

12 NGC 2007 Ulrich Abelein11 Electrical Characerization – Input Characteristics V DS = 2.25 V  HT sample in bipolar mode  S = 1.06 mV/dec!  Hysteresis visible  Gate controlled switch-off possible! W = 2µm

13 NGC 2007 Ulrich Abelein12 Summary and Outlook Summary: Influence of boron diffusion on device performance was shown Subthreshold slope of 1.06 mV/dec was shown Devcie can be optimized to needs of application –Very low subthreshold slope with measurable hysteresis –Low subthreshold slope without any hystersis Outlook: Realization of the p-channel device Shrinking device dimensions and reducing supply voltages


Download ppt "Ulrich Abelein, Mathias Born, Markus Schindler, Andreas Assmuth, Peter Iskra, Torsten Sulima, Ignaz Eisele Doping Profile Dependence of the Vertical Impact."

Similar presentations


Ads by Google