Download presentation
1
Types of Semiconductor Detectors
S W McKnight and C A DiMarzio
2
Outline Bolometers Photoconductive detectors Photovoltaic detectors
3
Bolometers Cryogenically cooled ~ 4.2 K Incident Radiation
Absorbing film Semiconductor Bolometer Electric leads/ Heat sinks Cryogenically cooled ~ 4.2 K
4
Semiconductor Bolometer
k Ef Eb Impurity level Binding Energy (Eb) ~ 50 meV
5
Effect of ΔT on Si Bolometer Conductivity
Ambient temperature = 4.2K → kT=0.362 meV Temperature = 4.3K → kT=0.371 meV
6
Photoconductive Detectors
k Eg
7
Conductivity Conductivity: σ = n e μ Material μn (cm2/V-s) μp
e=electron charge (1.6x10-19 C) =Electron scattering time (average time between scattering events) Mobility: Material μn (cm2/V-s) μp (cm2/V-s) Si 1350 480 CdS 250 15 GaAs 8500 400 InSb 100,000 1700 GaAs (77K) 200,000 10,000
8
Photoconductivity Dark current: σd = no e μn + po e μp
Photocurrent: σph = Δn e μn + Δp e μp Δn = Δp = photo-induced carrier density (m-3) = Nph η / V Nph = incident photon flux (s-1) η = quantum efficiency = carrier recombination time V = sample volume
9
Photoconductivity Recombination in n-type material:
Steady-state solution: Quantum efficiency: η = (1-R) Pe-h Pe-h = probability of absorption creating electron-hole pair
10
Photoconductors Material Eg (max) Si 1.1eV(i) (1.2μ) PbS
GaAs 1.43eV (0.87μ) InSb 0.18eV (6.9μ) Ge 0.67eV(i) (1.8μ) PbTe 0.29eV (4.3μ) CdS 2.42eV (0.51μ) Hg0.3Cd0.7Te 0.24eV (5.2μ) (77K) CdTe 1.58eV (0.78μ) Hg0.2Cd0.8 Te 0.083eV (15μ) (77K)
11
HgxCd1-xTe Band Gap Eg= x+ 5.35x10-4 T(1-2x) x x3 Eg= -0.26eV Eg= 1.6eV HgTe “Zero-gap” (inverted bands) CdTe
12
Photovoltaic Detectors
P-N junction detector Incident light creates voltage Same mechanism as solar cell
13
P-N Junction E Ef Eg Ef x Donor Levels electrons “holes”
Acceptor Levels x Doped Semiconductor (p-type) Doped Semiconductor (n-type)
14
P-N Junction - + E electrons “holes” Ef x
15
P-N Junction E + - electrons Ef “holes” x Depletion Region
16
P-N Junction E Ec electrons Ef “holes” Ev - + x Depletion Region
17
P-N Junction Currents - + Jdiffusion Jdrift Vo E Ec
Junction “built-in” voltage Vo Ef Ev - + x Depletion Region
18
P-N Junction Currents N-doped material: n≈Nd (# of donors)
19
P-N Junction Currents (No Bias Voltage)
Jdrift = A np = -Jo Jdiffusion = B e-Vo/kT JTotal = -Jo + B e-Vo/kT = 0 (equilibrium) → B= Jo e+Vo/kT
20
Biased P-N Junction Jdiffusion Jdrift Vo-Va Va Va E Ec Ef Ev x
Depletion Region Va x
21
P-N Junction Currents (Bias Voltage=Va)
Jdrift = A np = Jo Jdiffusion = B e-(Vo-Va)/kT JTotal = -Jo + B e-(Vo-Va)/kT B= Jo e+Vo/kT → JTotal = Jo (eVa/kT -1 )
22
P-N Junction Current - + IJunction VJunction V (volts)
-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 -0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 V a (volts) Junction Current (Amps) IJunction Io=A Jo = A - + VJunction
23
Photovoltaic Detection
Jdiffusion E Jdrift Ec Junction “built-in” voltage Vo Ef Ev - + Depletion Region x
24
Photovoltaic Detection
Absorption in depletion region creates electrons/hole pairs Built in electric field accelerates electrons and holes toward neutral region Photocurrent adds Iph= η e Nph to drift current
25
P-N Junction Photocurrent
0.06 Io=A Jo = A 0.04 Iph=A Jph = 0.02 A Junction Current (Amps) 0.02 -0.02 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 V (volts) a
26
Photovoltaic Sensing Circuit
+ Vph -
27
Photoconductive Sensing Circuit
Iph - + Vd
28
Photoconductive Detection
Jdrift Ec Vo+ Vd Ev Ef - + Depletion Region x
29
Avalanche Photodetection
Jdrift Ec Vo+ Vd Ev Ef Depletion Region x
30
Avalanche Photodiode Large reverse bias on junction
Photoelectrons create electron/hole pairs in depletion region Electron and holes can create more electron/hole pairs Device has gain (like PMT)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.