Download presentation
Presentation is loading. Please wait.
Published byFranklin Watson Modified over 9 years ago
1
REACTIVITY OF TRANSITION-METAL-ACTIVATED OXYGEN ANDREJA BAKAC AMES LABORATORY, IOWA STATE UNIVERSITY
2
LMOOH n+ Intermediates in metal-mediated oxidations by O 2 and H 2 O 2 Some are well characterized O-O bond length O-O stretching frequency chemical reactivity Stability: from transients to stable compounds (crystal structure) TRANSITION METAL HYDROPEROXIDES
3
Cytochrome P450 Both reactive in substrate oxidations? Epoxidation vs. hydroxylation? (P)Fe V O / (P + )Fe IV O(P)Fe III OOH
4
(N 4 )(H 2 O)M III OOH 2+ (M = Rh, Co, Cr) Cr aq OOH 2+ SIMPLE INORGANIC ANALOGS
5
Some standard chemistry O-ATOM TRANSFER (NH 3 ) 4 (H 2 O)RhOOH 2+ + PPh 3 OPPh 3 + (NH 3 ) 4 Rh(H 2 O) 2 3+ 18 O labeling:100% O-transfer Rate = 8.8 × 10 3 [RhOOH 2+ ][PPh 3 ][H + ] Nucleophilic attack at oxygen
6
Some not-so-standard chemistry (NH 3 ) 4 (H 2 O)RhOOH 2+ + Br - Expect Rate = k[Br - ][H + ][RhOOH 2+ ]
7
Experiment -- High [H + ] (0.2 – 1 M), high [Br - ] (0.1 M) -- Low [H + ] (0.01 - 0.1 M), low [Br - ] (10 -3 - 10 -2 M) Br 2 /Br 3 - not produced O 2 is generated k = 3.8 M -2 s -1 Br 2 /Br 3 - produced 266 nm (Br 3 - ) = 4.09 × 10 4 M -1 cm -1 k = 1.8 M -2 s -1
8
Hypothesis (3) (1) RhOOH 2+ + Br - HOBr + RhOH 2+ (2) HOBr + Br - + H + Br 2 + H 2 O (4) Br 2 + RhOOH 2+ products Speed up (1), slow (4) facilitate formation of Br 2 /Br 3 -
9
Direct look at Br 2 /(NH 3 ) 4 (H 2 O)RhOOH 2+
10
Br 2 + (NH 3 ) 4 (H 2 O)RhOOH 2+, kinetics -d[RhOOH 2+ ]/dt =
11
HOBr is reactive form Br 2 + H 2 O HOBr + Br - + H + K = 6 × 10 -9 M 2 HOBr + RhOOH 2+ Rh(H 2 O) 3+ + Br - + O 2 -d[RhOOH 2+ ]/dt = k
12
RhOOH 2+ + Br - HOBr + RhOH 2+ k = 1.8 M -2 s -1 Explains products, kinetic dependencies, and f(2) between extremes (NH 3 ) 4 (H 2 O)RhOOH 2+ + Br -, mechanism
13
Some unexpected chemistry Sequential stopped-flow - generate LCrOOH 2+ from LCrOO 2+ + Ru II - allow formation of LCr(O) 2 + - mix with PAr 3, monitor kinetics at 470 nm LCr(O) 2 + + PAr 3 LCr III + OPAr 3 Rate = k[LCr(O) 2 + ][PAr 3 ]
14
LCr(O) 2 + + PAr 3 LCr III + OPAr 3 PPh 3, k = 4.4 × 10 5 M -1 s -1 LCr( 18 O)( 16 O) + + PAr 3 LCr III + 16 OPAr 3 Not O-atom transfer
15
Electron transfer LCr(O) 2 + + PAr 3 LCr IV + PAr 3 + PAr 3 + + H 2 OHOPAr 3 + H + HOPAr 3 + LCr IV OPAr 3 + LCr III + H + LCr(O) 2 + + PAr 3 LCr III + OPAr 3, mechanism
16
Competition with LCrOOH 2+ LCr(O) 2 + LCrOOH 2+ + PAr 3
17
L 1 CrOOH 2+ + PPh 3 + H + L 1 Cr III + OPPh 3 OXYGEN ATOM TRANSFER Mechanism
18
LCr(O) 2 + and LCrOOH 2+ react with PPh 3 LCr(O) 2 + Electron transfer, k = 4.4 × 10 5 M -1 s -1 LCrOOH 2+ O-atom transfer, H + - catalyzed, k = 850 M -2 s -1 Hints about P450-OOH reactivity? SUMMARY -- LCrOOH 2+ LCr V (O) 2 + unusual -- Reactivity not outstanding & requires H +
19
Acknowledgement Dr. Oleg Pestovsky Dr. Kelemu Lemma U.S. Department of Energy U.S. National Science Foundation
20
WHY SO FAST? HOBr + H 2 O 2 O 2 + Br - + H + + H 2 O (2-5) 10 4 M -1 s -1 HOBr + RhOOH 2+ Rh(H 2 O) 3+ + Br - + O 2
21
O 2 + 2e - + 2H + H 2 O 2 E = 0.78 V (pH 0)Cr aq 3+ + O 2 + 2e - + H + CrOOH 2+ E = 0.65 V (pH 0) Thermodynamics: small advantage for Cr aq OOH 2+ COORDINATION FACILITATES OXIDATION & REDUCTION 2-electron reduction of HOBr, thermodynamics Cr aq OOH 2+ + HOBr, k = 10 7 M -1 s -1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.