Download presentation
Presentation is loading. Please wait.
Published byMeagan Day Modified over 9 years ago
1
Introduction to Computer Graphics Chapter 6 – 2D Viewing Pt 3 1
2
2 Nicholl-Lee-Nicholl Line Clipping (NLN) Creating more regions around the clip window to avoid multiple clipping of an individual line segment. Different to Cohen where Cohen require multiple calculation along the path of a single line before an intersection on the clipping rectangle is locate or completely rejected. NLN eliminate extra calculations through new region created.
3
3 Nicholl-Lee-Nicholl Line Clipping (NLN) Compared to Cohen and Liang; NLN perform fever comparisons and division. The trade-off is that NLN can only be applied two two-dimensional clipping only.
4
4 Nicholl-Lee-Nicholl Line Clipping (NLN) How its work? First, need to determine the endpoints P 1 and P 2 from the possible nine regions. Out of nine, NLN only interested on three regions. If P 1 lies in any one of other six regions, symmetry transformation will be applied first. Then, is to determine where P 2 is. If P 1 is inside and P 2 is outside we will follow the first case where intersection with appropriate window boundary is carried out. Four regions of L,T,R,B which contains P 2 are introduced. If P 1 and P 2 are inside the clipping rectangle, we save the entire line.
5
5 L NLN (2,2)(6,2) (6,6) (2,6) P1 (1,4) LT LR LB P2 (6,7)
6
6 NLN For example when P 2 is in region LT if Slope P 1 P TR < Slope P 1 P 2 < Slope P 1 P TL Or (Y T - Y 1 )/(X R – X 1) ) < (Y 2 - Y 1 )/(X 2 – X 1 ) < (Y T – Y 1 )/(X L – X 1 ) Ex: (6-4)/(6-1) < (7-4)/(6-1) < (6-4)/(2-1) 2/5 < 3/5 < 2 And we clip the entire line if (Y T – Y 1 )(X 2 – X 1 ) < (X L – X 1 )(Y 2 – Y 1 )
7
7 NLN From the parametric equations: x = x 1 + (x 2 – x 1 )u y = y 1 + (y 2 – y1)u An intersection position on the left boundary is x = x L with u = (x L – x 1 )/(x 2 – x 1 ) will give coordinate y = y 1 +((y 2 – y 1 )/(x 2 – x 1 )) * (x L – x 1 ) An intersection position on the top boundary has y = y T with u = (y T – y 1 )/(y 2 – y 1) will give coordinate x = x 1 +((x 2 – x 1 )/(y 2 – y 1 )) * (y T – y 1 )
8
8 Line Clipping Using Nonrectangular Clip Windows Some applications clip lines against arbitrarily shaped polygons. Liang and Cyrus-Beck algorithm can be extended to convex polygon windows. For concave polygon-clipping regions, we need to split the concave polygon into set of convex polygons. Circles or other curved-boundary clipping regions are also possible but slower because intersection calculations involve nonlinear curve equation. Line can be identified as completely inside if the distance for both endpoints of a line is less than or equal to the radius squared. If not, then intersection calculation is performed.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.