Download presentation
Presentation is loading. Please wait.
Published byMelanie Carpenter Modified over 9 years ago
1
DO NOW!! What is the difference between an autotroph and a heterotroph? Why do plants need sunlight? What gases are exchanged between plants and animals? What is the difference between an autotroph and a heterotroph? Why do plants need sunlight? What gases are exchanged between plants and animals?
2
Overview Of Photosynthesis
3
Objectives To be able to list the inputs and outputs of photosynthesis. To be able to identify the structures in a chloroplast. To be able to summarize light- dependent reactions. To be able to list the inputs and outputs of photosynthesis. To be able to identify the structures in a chloroplast. To be able to summarize light- dependent reactions.
4
Video intro https://www.youtube.com/watch?v=eo5XndJaz-Y
5
Photosynthesis Process of converting light energy to chemical energy!! Used by autotrophs to produce food All of our energy starts as light energy! Plants use sunlight to make food animals eat plants other animals eat those animals Process of converting light energy to chemical energy!! Used by autotrophs to produce food All of our energy starts as light energy! Plants use sunlight to make food animals eat plants other animals eat those animals
6
Photosynthetic Organisms Go through Photosynthesis to produce GLUCOSE… Autotrophs “Producers” in the food web Consist of plants, protists, cyanobacteria Go through Photosynthesis to produce GLUCOSE… Autotrophs “Producers” in the food web Consist of plants, protists, cyanobacteria
7
Photosynthesis: The Chemical Equation
8
Overview of Phases 1) Light dependent Light energy is absorbed and converted into chemical energy in the form of ATP and NADPH. (also produces oxygen as byproduct!) 2) Light independent (Calvin Cycle) CO 2 ATP and NADPH (from light dependent) are used to make glucose. 1) Light dependent Light energy is absorbed and converted into chemical energy in the form of ATP and NADPH. (also produces oxygen as byproduct!) 2) Light independent (Calvin Cycle) CO 2 ATP and NADPH (from light dependent) are used to make glucose. *Glucose is the basic building block for more complex sugars such as starch.*
9
Glucose
10
The Chloroplast
11
Structures within a chloroplast Thylakoids : flattened sac-like membranes arranged in stacks (stacks are called grana). Light-dependent reactions take place here. Electron transport occurs in the thylakoid membrane
12
Structures within a chloroplast (cont.) Stroma: Aqueous space outside the grana. Light-independent reactions take place here. Stroma: Aqueous space outside the grana. Light-independent reactions take place here.
13
Light Dependent Reactions Step 1: Light energy reaches photosytem II, exciting electrons and causing water molecule to split. - H + is released, stays in thylakoid space. - O 2 is given off as a byproduct. - Electron released into electron transport system
14
Step 2: Excited electrons move from photosystem II through the membrane As they move, protons (H + ) are pumped into thylakoid space (**active transport!! Tada!!) Light Dependent Reactions
15
Light Dependent Reaction Step 3: At photosystem I, electrons are re-energized and transferred to ferrodoxin (helper protein): NADPH (energy storage molecule) is formed from NADP+ (we need this for the Calvin Cycle!)
16
Light Dependent Reactions Step 4: Hydrogen ions move through the ATP Synthase because of the concentration gradient, creating ATP from ADP
17
Light Dependent Reactions http://www.science.smith.edu/departments/Biology/Bio231/ltrxn.html https://www.youtube.com/watch?v=joZ1EsA5_NY http://www.science.smith.edu/departments/Biology/Bio231/ltrxn.html https://www.youtube.com/watch?v=joZ1EsA5_NY
18
Do Now!! What goes into a light dependent reaction? What comes out? What is the goal of a light dependent reaction? What is given off as a byproduct? What is the name of the protein that converts NADP+ to NADPH (the last electron acceptor)? What goes into a light dependent reaction? What comes out? What is the goal of a light dependent reaction? What is given off as a byproduct? What is the name of the protein that converts NADP+ to NADPH (the last electron acceptor)?
19
Objectives To review light dependent reactions To introduce light independent reactions by completing a Calvin Cycle activity To review light dependent reactions To introduce light independent reactions by completing a Calvin Cycle activity
20
The Calvin Cycle Takes place in the STROMA Uses NADPH and ATP from Phase I (light dependent reactions) Needs CO 2 !!! Produces GLUCOSE!! Takes place in the STROMA Uses NADPH and ATP from Phase I (light dependent reactions) Needs CO 2 !!! Produces GLUCOSE!!
21
Calvin Cycle Functions like a sugar factory within a chloroplast Regenerates the starting material with each turn
22
Calvin Cycle Inputs -ATP -NADPH -CO 2 Outputs -Glucose Outputs -Glucose
23
Calvin Cycle
25
Do Now!! How does our body make energy? What are the outputs of photosynthesis? What do you think the outputs of cellular respiration are? How does our body make energy? What are the outputs of photosynthesis? What do you think the outputs of cellular respiration are?
26
Objectives To compare and contrast photosynthesis and cellular respiration To identify the inputs and outputs of cellular respiration To define NADH and FADH2 To complete a cellular respiration exercise lab! To compare and contrast photosynthesis and cellular respiration To identify the inputs and outputs of cellular respiration To define NADH and FADH2 To complete a cellular respiration exercise lab!
27
Objectives To compare and contrast photosynthesis and cellular respiration To identify the inputs and outputs of cellular respiration To define NADH and FADH2 To compare and contrast photosynthesis and cellular respiration To identify the inputs and outputs of cellular respiration To define NADH and FADH2
28
So, what is cellular respiration?
29
How does cellular respiration compare to photosynthesis? PhotosynthesisCell Respiration CO 2 + H 2 O + lightO 2 + C 6 H 12 O 6 CO 2 + H 2 O + ATP CO 2 + H 2 O + Light O 2 + C 6 H 12 O 6 O 2 + C 6 H 12 O 6 CO 2 + H 2 O + ATP Inputs Outputs Chemical Formula
30
All cells require energy to do work o Aerobic = NEEDS OXYGEN!! o In aerobic respiration we use oxygen to help release the energy stored in bonds. o Anaerobic = does NOT require oxygen o Aerobic = NEEDS OXYGEN!! o In aerobic respiration we use oxygen to help release the energy stored in bonds. o Anaerobic = does NOT require oxygen
31
NADH and FADH 2 FADH 2 (Riboflavin) FADH 2 FAD + 2 H + + 2e- B 2 Vitamin Accepts 2 electrons NADH (Niacin) NADH NAD + + H + + 2e- B 3 Vitamin Accepts 2 electrons FADH 2 (Riboflavin) FADH 2 FAD + 2 H + + 2e- B 2 Vitamin Accepts 2 electrons NADH (Niacin) NADH NAD + + H + + 2e- B 3 Vitamin Accepts 2 electrons *These are electron carriers!
32
Do now!! What is the chemical equation for cellular respiration? Why are NADH and FADH2 important? What is the overall goal of cellular respiration? What is the chemical equation for cellular respiration? Why are NADH and FADH2 important? What is the overall goal of cellular respiration?
33
Objectives To discuss glycolysis and its importance To identify the inputs and outputs of glycolysis To complete a cellular respiration POGIL activity To discuss glycolysis and its importance To identify the inputs and outputs of glycolysis To complete a cellular respiration POGIL activity
34
Let’s try some sample math problems before we begin Spongebob is selling Krabby patties. He paid 2 dollars per Krabby patty and is selling each at 7 dollars. How much NET profit is Spongebob making if he sells 1 Krabby patty? 10 Krabby patties? Spongebob is selling Krabby patties. He paid 2 dollars per Krabby patty and is selling each at 7 dollars. How much NET profit is Spongebob making if he sells 1 Krabby patty? 10 Krabby patties?
35
Steps of Cellular Respiration Step 1: Glycolysis (anaerobic, cytoplasm) Step 2: Krebs Cycle (aerobic, mitochondrial matrix) Step 3: Electron Transport Chain (aerobic, mitochondrial membrane) Step 1: Glycolysis (anaerobic, cytoplasm) Step 2: Krebs Cycle (aerobic, mitochondrial matrix) Step 3: Electron Transport Chain (aerobic, mitochondrial membrane)
37
Lets color code Please take out your diagrams and grab 2 colored pencils!
38
Glycolysis
39
Glycolysis (continued) 4. 4 molecules of ADP are used to make 4 ATP, and G3P compounds are converted into 2 molecules of Pyruvate. 5. The net total being 2 ATP molecules http://highered.mcgraw- hill.com/sites/0072507470/student_view0/ch apter25/animation__how_glycolysis_works.ht ml
40
Do Now!! If there was a net gain of 28 ATP in glycolysis, how many glucose molecules were consumed? If 18 NADH are produced, how many ATP are gained? How many glucose molecules are consumed? How does ATP supply energy for our cells? If there was a net gain of 28 ATP in glycolysis, how many glucose molecules were consumed? If 18 NADH are produced, how many ATP are gained? How many glucose molecules are consumed? How does ATP supply energy for our cells?
41
Do Now!! (P. 2) If there was a net gain of 14 ATP in glycolysis, how many glucose molecules were consumed? If 24 ATP are produced, how many NADH are gained? How many glucose molecules are consumed? List the steps of cellular respiration and identify where they take place. If there was a net gain of 14 ATP in glycolysis, how many glucose molecules were consumed? If 24 ATP are produced, how many NADH are gained? How many glucose molecules are consumed? List the steps of cellular respiration and identify where they take place.
42
Objectives (P.2) To discuss the Kreb’s cycle and its importance To identify the inputs and outputs of the Kreb’s cycle To discuss the Kreb’s cycle and its importance To identify the inputs and outputs of the Kreb’s cycle
43
Objectives (P.1 & P.6) To discuss the Kreb’s cycle and its importance To identify the inputs and outputs of the Kreb’s cycle To complete cellular respiration POGIL activity To discuss the Kreb’s cycle and its importance To identify the inputs and outputs of the Kreb’s cycle To complete cellular respiration POGIL activity
44
The Kreb’s Cycle Please take out your diagrams and grab 2 colors!
45
The Kreb’s Cycle 1.Pyruvate first reacts with coenzyme A (CoA), forms acetyl CoA. CO2 is released and NAD+ converts to NADH. 2.Acetyl CoA combines with 4 carbon compound, forms 6 carbon citric acid. 1.Pyruvate first reacts with coenzyme A (CoA), forms acetyl CoA. CO2 is released and NAD+ converts to NADH. 2.Acetyl CoA combines with 4 carbon compound, forms 6 carbon citric acid.
46
The Kreb’s Cycle (continued) 3.Citric acid broken down, releasing CO2 and forming ATP, NADH and FADH2 4.4 carbon compound regenerated, cycle continues Total ATP produced: 2 (cycles twice, once for each pyruvate!) 3.Citric acid broken down, releasing CO2 and forming ATP, NADH and FADH2 4.4 carbon compound regenerated, cycle continues Total ATP produced: 2 (cycles twice, once for each pyruvate!)
47
Do Now! (P. 1) Where does the Kreb’s cycle take place? Why are there 2 total ATP produced instead of 1? What happens to the NADH and FADH2 produced? If 6 FADH2 are produced in the Kreb’s cycle, how many glucose molecules did you start with? http://highered.mheducation.com/sites/0072507470/student_view0/ chapter25/animation__how_the_krebs_cycle_works__quiz_1_.html http://highered.mheducation.com/sites/0072507470/student_view0/ chapter25/animation__how_the_krebs_cycle_works__quiz_1_.html Where does the Kreb’s cycle take place? Why are there 2 total ATP produced instead of 1? What happens to the NADH and FADH2 produced? If 6 FADH2 are produced in the Kreb’s cycle, how many glucose molecules did you start with? http://highered.mheducation.com/sites/0072507470/student_view0/ chapter25/animation__how_the_krebs_cycle_works__quiz_1_.html http://highered.mheducation.com/sites/0072507470/student_view0/ chapter25/animation__how_the_krebs_cycle_works__quiz_1_.html
48
Do Now!! (P. 2) Where does the Kreb’s cycle take place? What happens to the NADH and FADH2 produced? If 32 FADH2 are produced in the Kreb’s cycle, how many glucose molecules did you start with? http://highered.mheducation.com/sites/0072507470/student_view0/chapte r25/animation__how_the_krebs_cycle_works__quiz_1_.html http://highered.mheducation.com/sites/0072507470/student_view0/chapte r25/animation__how_the_krebs_cycle_works__quiz_1_.html Where does the Kreb’s cycle take place? What happens to the NADH and FADH2 produced? If 32 FADH2 are produced in the Kreb’s cycle, how many glucose molecules did you start with? http://highered.mheducation.com/sites/0072507470/student_view0/chapte r25/animation__how_the_krebs_cycle_works__quiz_1_.html http://highered.mheducation.com/sites/0072507470/student_view0/chapte r25/animation__how_the_krebs_cycle_works__quiz_1_.html
49
Objectives (P.2) To identify the inputs and outputs of the electron transport chain. To complete a cellular respiration POGIL activity To identify the inputs and outputs of the electron transport chain. To complete a cellular respiration POGIL activity
50
Electron Transport Chain Please take out your diagrams and grab 2 colors!!
51
Electron Transport Chain 1.NADH and FADH2 release electrons, converted into NAD+ and FAD (H+ released into the mitochondrial matrix). 2.H+ ions are pumped across inner mitochondrial membrane as electrons move along membrane (with the help of proteins).
52
Electron Transport Chain (continued) 3. Oxygen is final electron acceptor (protons and electrons combine with oxygen to form water ). 4. H+ ions then diffuse back into matrix through ATP synthase (chemiosmosis), producing 32 ATP. Total ATP produced for one molecule of glucose = 32 ATP molecules
53
Do Now!! (P. 2) Where does the electron transport chain take place? How many ATP are produced? How many total molecules of ATP are produced for one molecule of glucose? http://highered.mheducation.com/sites/0072507470/stud ent_view0/chapter25/animation__electron_transport_syst em_and_atp_synthesis__quiz_1_.html http://highered.mheducation.com/sites/0072507470/stud ent_view0/chapter25/animation__electron_transport_syst em_and_atp_synthesis__quiz_1_.html Where does the electron transport chain take place? How many ATP are produced? How many total molecules of ATP are produced for one molecule of glucose? http://highered.mheducation.com/sites/0072507470/stud ent_view0/chapter25/animation__electron_transport_syst em_and_atp_synthesis__quiz_1_.html http://highered.mheducation.com/sites/0072507470/stud ent_view0/chapter25/animation__electron_transport_syst em_and_atp_synthesis__quiz_1_.html
54
Objectives To define anaerobic respiration. To compare and contrast alcohol fermentation and lactic acid fermentation. To define anaerobic respiration. To compare and contrast alcohol fermentation and lactic acid fermentation.
55
Stand up! Move your arms up and down for one minute! Do not stop until the time is up! What is happening in your arms? Move your arms up and down for one minute! Do not stop until the time is up! What is happening in your arms?
56
Anaerobic Respiration Making ATP without oxygen (fermentation) Problems: Only 2 net ATP per glucose molecule Limited amount of NAD+ Yeast, People, Bacteria, Fungus Used to make beer, wine, and bread Making ATP without oxygen (fermentation) Problems: Only 2 net ATP per glucose molecule Limited amount of NAD+ Yeast, People, Bacteria, Fungus Used to make beer, wine, and bread
57
2 Main Types of Fermentation 1. Lactic Acid Fermentation Pyruvate from glycolysis converted to lactic acid Lactic acid is associated with the “burn” associated with heavy exercise If too much lactic acid builds up, your muscles feel sore and may give out 1. Lactic Acid Fermentation Pyruvate from glycolysis converted to lactic acid Lactic acid is associated with the “burn” associated with heavy exercise If too much lactic acid builds up, your muscles feel sore and may give out
58
Lactic Acid Fermentation Inputs: Glucose, 2ADP Outputs: 2ATP, 2 lactic acid Ex: Bacteria that help in making yogurt, cheese and sour cream. Human muscle cells when out of oxygen. Inputs: Glucose, 2ADP Outputs: 2ATP, 2 lactic acid Ex: Bacteria that help in making yogurt, cheese and sour cream. Human muscle cells when out of oxygen.
59
Lactic Acid Fermentation Physical conditioning allows your body to adapt to increased activity: The body can increase its ability to deliver oxygen to muscles Long-distance runners wait until the final sprint to exceed their aerobic capacity Physical conditioning allows your body to adapt to increased activity: The body can increase its ability to deliver oxygen to muscles Long-distance runners wait until the final sprint to exceed their aerobic capacity
60
2 Main Types of Fermentation 2. Alcohol Fermentation In yeast and some bacteria Pyruvate is converted to ethyl alcohol and carbon dioxide Ex: yeast used for baking bread and making wine/beer https://www.youtube.com/wat ch?v=i1w09QKf9GU https://www.youtube.com/wat ch?v=i1w09QKf9GU 2. Alcohol Fermentation In yeast and some bacteria Pyruvate is converted to ethyl alcohol and carbon dioxide Ex: yeast used for baking bread and making wine/beer https://www.youtube.com/wat ch?v=i1w09QKf9GU https://www.youtube.com/wat ch?v=i1w09QKf9GU
61
Alcohol Fermentation Inputs: Glucose, 2ADP Outputs: 2ATP, 2 ethanol, 2 CO 2 NAD+ gets regenerated Inputs: Glucose, 2ADP Outputs: 2ATP, 2 ethanol, 2 CO 2 NAD+ gets regenerated
62
Why don’t you get drunk off bread? o Take a minute and pair up with the person sitting NEXT to you and discuss this question.
63
Aerobic vs. Anaerobic Respiration Lactic acid or CO2/ethanol Cytoplasm
64
Do Now!! What happens when we don’t get enough oxygen? What does our body do? What happens when we don’t get enough oxygen? What does our body do?
65
Do Now!! What are the two phases of photosynthesis? What are the inputs and outputs of each phase? What is the chemical equation for photosynthesis? What are the two phases of photosynthesis? What are the inputs and outputs of each phase? What is the chemical equation for photosynthesis?
66
Objectives To go over the steps of light dependent reactions To understand the inputs and outputs of light dependent reactions To label a light reactions diagram To go over the steps of light dependent reactions To understand the inputs and outputs of light dependent reactions To label a light reactions diagram
67
Do Now!! What is the equation for photosynthesis? Where do light dependent reactions take place? Independent? What are the inputs of light dependent reactions? The outputs? What is the equation for photosynthesis? Where do light dependent reactions take place? Independent? What are the inputs of light dependent reactions? The outputs?
68
Objectives To go over the steps of light dependent reactions To understand the inputs and outputs of light dependent reactions To label a light reactions diagram To go over the steps of light dependent reactions To understand the inputs and outputs of light dependent reactions To label a light reactions diagram
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.