Download presentation
Presentation is loading. Please wait.
Published byCharlotte Riley Modified over 9 years ago
1
Lab 3
2
Why Compressed Row Storage –A sparse matrix has a lot of elements of value zero. –Using a two dimensional array to store a sparse matrix wastes a lot of memory. –Compressed Row Storage (CRS) format only stores the nonzero elements. –Using CRS format to store a sparse matrix will save a lot of memory.
3
Compressed Row Storage – val array stores the values of the nonzero elements in a row-wise fashion. – col_ind array stores the corresponding column indices of the elements in the val array. E.g. col_ind[5] stores the column index of val[5]. – row_ptr array stores the locations in the val array and col_ind array that start a row.
4
val 10-2393787…42 col_ind 15126234…256 0 1 2 3 4 5 0 1 2 3 4 5 row_ptr 0258121619 0 2 5 16 The number of nonzero elements of row i = row_ptr[i+1] - row_ptr[ i ] The value of nonzero elements of row i: val[ row_ptr[ i ] ],..., val[ row_ptr[ i+1 ] -1 ] the number of rows +1 the number of nonzero elements in a matrix
5
//Compressed Row Storage format //for a sparse square (mSize X mSize) matrix public class CRS{ //the values of the nonzero elements of the matrix float[] val; //the column indices of the elements in val array int[] col_idx; //locations in the val and col_idx array that start a row int[] row_ptr; //the size of the matrix: the number of rows int mSize=0; //constructor that takes a sparse matrix and convert it to a CRS object CRS( float[][] matrix){... } //print the matrix in CRS format. public void printCRS(){... } //test the program public static void main(String[] args){... }
6
CRS( float[][] matrix){ int i, j, index; //the total number of nonzero in the matrix int totalNonZeros; //get the number of rows and columns mSize = matrix.length; //get the total number of nonzero entries in the matrix totalNonZeros = 0; for( i=0; i<mSize; i++){ for( j=0; j<mSize; j++){ if(matrix[i][j] != 0) totalNonZeros++; } //allocate memory for val and col_idx array val = new float[ totalNonZeros ]; col_idx = new int[ totalNonZeros ]; //allocate memory for row_ptr row_ptr = new int[ mSize+1]; row_ptr[ 0 ] = 0;
7
//store the matrix in CRS format index = 0;// point to the next position to store the value for( i=0; i<mSize; i++ ){//each row for( j=0; j<mSize; j++ ){//each column if( matrix[i][j] != 0 ){ //add the value to val val[ index ] = matrix[ i ][ j ]; //record the column index in col_idx col_idx[ index ] = j; index++; } //update row_ptr row_ptr[ i+1 ] = index;} }//end of CRS( float[][] matrix) xx... index val
8
//test the program public static void main(String[] args){ float[][] matrix = {{10, 0, 0, 0, -2, 0}, {3, 9, 0, 0, 0, 3}, {0, 7, 8, 7, 0, 0}, {3, 0, 8, 7, 5, 0}, {0, 8, 0, 9, 9, 13}, {0, 4, 0, 0, 2, -1}}; System.out.println("the original sparse matrix"); for(int i=0; i<6; i++){ for(int j=0; j<6; j++){ System.out.print(matrix[i][j]+", "); } System.out.println(); } System.out.println(); CRS crs = new CRS(matrix); crs.printMatrix(); crs.printCRS(); }
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.