Download presentation
Presentation is loading. Please wait.
Published byMarcus Nichols Modified over 9 years ago
1
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv:0910.1139 Reviews: Talk online: sachdev.physics.harvard.edu arXiv:0901.4103
2
Frederik Denef, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Frederik Denef, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Yejin Huh, Harvard Max Metlitski, Harvard Yejin Huh, Harvard Max Metlitski, Harvard HARVARD
3
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
4
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
5
The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
6
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition
7
Insulator (the vacuum) at large U
8
Excitations:
10
Excitations of the insulator:
12
CFT3
14
Classical vortices and wave oscillations of the condensate Dilute Boltzmann/Landau gas of particle and holes
15
CFT at T>0
16
D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989) Resistivity of Bi films M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)
17
Quantum critical transport S. Sachdev, Quantum Phase Transitions, Cambridge (1999).
18
Quantum critical transport K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
19
Quantum critical transport P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, 11601 (2005), 8714 (1997).
20
Quantum critical transport
23
Density correlations in CFTs at T >0
25
Conformal mapping of plane to cylinder with circumference 1/T
27
Density correlations in CFTs at T >0 No hydrodynamics in CFT2s.
28
Density correlations in CFTs at T >0
29
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
30
Density correlations in CFTs at T >0 K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
31
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
32
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
35
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) Collisionless to hydrodynamic crossover of SYM3
36
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) Collisionless to hydrodynamic crossover of SYM3
37
Universal constants of SYM3 P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) C. Herzog, JHEP 0212, 026 (2002)
38
Electromagnetic self-duality
39
K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions
41
C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)
43
C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036
44
The self-duality of the 4D abelian gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036
45
The self-duality of the 4D abelian gauge fields leads to C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son, hep-th/0701036
46
Electromagnetic self-duality
47
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
48
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
49
d-wave superconductivity in cuprates Electron states occupied
50
d-wave superconductivity in cuprates + + - -
51
+ + - -
52
4 two-component Dirac fermions
53
d-wave superconductivity in cuprates
54
Time-reversal symmetry breaking
55
Lattice rotation symmetry breaking
56
M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000) E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson,.-A. Kim,er, P. OretoE. Fradkivelson, Phys. Rev. BPhys. Rev. B 77, 184514 (2008).
57
M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000) Ising order and Dirac fermions couple via a “Yukawa” term. Nematic ordering Time reversal symmetry breaking
58
M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000) Ising order and Dirac fermions couple via a “Yukawa” term. Nematic ordering Time reversal symmetry breaking
59
Integrating out the fermions yields an effective action for the scalar order parameter Expansion in number of fermion spin components N f Y. Huh and S. Sachdev, Physical Review B 78, 064512 (2008).
60
Integrating out the fermions yields an effective action for the scalar order parameter Expansion in number of fermion spin components N f Y. Huh and S. Sachdev, Physical Review B 78, 064512 (2008).
61
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
62
1. Quantum-critical transport Collisionless-t0-hydrodynamic crossover of CFT3s 2. Exact solution from AdS/CFT Constraints from duality relations 3. Quantum criticality of Dirac fermions “Vector” 1/N expansion 4. Quantum criticality of Fermi surfaces The genus expansion
63
Quantum criticality of Pomeranchuk instability x y
64
Electron Green’s function in Fermi liquid (T=0)
66
Quantum criticality of Pomeranchuk instability x y
67
x y
68
x y
70
Quantum critical
71
Quantum criticality of Pomeranchuk instability Quantum critical Classical d=2 Ising criticality
72
Quantum criticality of Pomeranchuk instability Quantum critical D=2+1 Ising criticality ?
73
Quantum criticality of Pomeranchuk instability
78
Hertz theory
79
Quantum criticality of Pomeranchuk instability Hertz theory
80
Quantum criticality of Pomeranchuk instability Sung-Sik Lee, Physical Review B 80, 165102 (2009)
81
Quantum criticality of Pomeranchuk instability A string theory for the Fermi surface ?
85
AdS 4 -Reissner-Nordstrom black hole
86
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788 Examine free energy and Green’s function of a probe particle
87
Short time behavior depends upon conformal AdS 4 geometry near boundary T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
88
Long time behavior depends upon near-horizon geometry of black hole T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
89
Radial direction of gravity theory is measure of energy scale in CFT T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
90
AdS 4 -Reissner-Nordstrom black hole
91
AdS 2 x R 2 near-horizon geometry
92
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 Infrared physics of Fermi surface is linked to the near horizon AdS 2 geometry of Reissner-Nordstrom black hole
93
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 AdS 4 Geometric interpretation of RG flow
94
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 AdS 2 x R 2 Geometric interpretation of RG flow
95
Green’s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 See also M. Cubrovic, J Zaanen, and K. Schalm, arXiv:0904.1993
96
Green’s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 Similar to non-Fermi liquid theories of Fermi surfaces coupled to gauge fields, and at quantum critical points
97
Free energy from gravity theory F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
98
General theory of finite temperature dynamics and transport near quantum critical points, with applications to antiferromagnets, graphene, and superconductors Conclusions
99
The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density Conclusions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.