Download presentation
Presentation is loading. Please wait.
Published byMagdalen Jacobs Modified over 9 years ago
1
Hadrons in a Dynamical AdS/QCD model Colaborators: W de Paula (ITA), K Fornazier (ITA), M Beyer (Rostock), H Forkel (Berlin) Tobias Frederico Instituto Tecnológico de Aeronáutica - Brasil PRD 075019 (2009) 79 JHEP 07 (2007) 077 PLB 693 (2010) 287
2
Outline Regge Phenomenology AdS/QCD models Deformed AdS metric Meson and Baryon spectra Dynamical AdS/QCD model High spin meson and Scalar spectra I=0 scalar partial decay width I=1/2 scalar & K-Pi S-wave phase-shift Summary
3
Regge trajectories 2S+1 L J M 2 ~W(N+L) W ~ 1GeV 2 D.V. Bugg 2004
4
Light-hadron spectra E. Klempt 2002 JHEP 07 (2007) 077 N=1 N=2
5
Field/Operator correspondence field theory operators classical fields operator dimension scalars Mass of the field carries the dimension Witten (1998) small z AdS 5 x S 5 Holographic coordinate Maldacena (1998) Holography - AdS/CFT
6
AdS/QCD models Hard IR wall Polchinski and Strassler, Phys. Rev. Lett.88, 031601 (2002); JHEP 05, 012 (2003) Boschi and Braga, JHEP 0305, 009 (2003); EPJ C32,529 (2004) Brodsky and de Téramond, Phys. Rev. Lett. 96, 0201601 (2006). Katz, Lewandowski, and Schwartz, Phys. Rev. D 74, 086004 (2006). … Soft breaking Karch, Katz, Son and Stephanov, Phys. Rev. D 74, 015005 (2006). Andreev and Zakharov, arXiv:hep-ph/0703010; Phys. Rev. D 74, 025023 (2006). Kruczenski, Zayas, Sonnenschein and Vaman, JHEP 06, 046 (2005) Kuperstein and Sonnenschein, JHEP 11, 026 (2004) …
7
Meson and baryon excitations in AdS/QCD (A bottom-up approach) Hadron phenomenology (light mesons and baryons) M 2 proport. J (L) total (angular) momentum M 2 proport. N radial excitation mesons W = 1.25±0.15 GeV 2 and 1.14 ± 0.013 GeV 2 baryons W =1.081 ± 0.035 GeV 2 AdS/CFT correspondence and QCD hard scattering amplitudes () Polchinski and Strassler 2002 UV ~ z Δ, Δ dimension of op., z 5 th dimension conformal symmetry broken by confinement M 2 = W(L+N), NOT ~L+2N etc. almost universal W ~1.1 GeV 2
8
Standard bulk equations with A(z)=0 Identification of hadrons lightest string modes ↔ leading order twist → low spin hadrons (valence quark states) orbital excitations of strings ↔ fluctuations around the AdS background → higher spin states Interpolating operators ( Brodsky and de Téramond 2005) fixing the 5-dim effective mass (bottom up, UV phenomenology)
9
String modes in AdS bulk Sturm Liouville type eigenvalue problem for mesons and baryons e.g. solve “free” Dirac equation in AdS 5 space where A(z)=0 Choice of states through UV behavior (Polchinsky & Strassler) (scalar) (fermion) Standard bulk equations with A(z)=0
10
Soft conformal symmetry breaking / Confinement Request phenomenological Regge behavior for both, orbital AND radial excitations of both, mesons AND baryons Confinement harmonic oscillator type Soft conformal sym. breaking universal implementation only one a priori free scale simple realisation via twist dimension new effective potential JHEP 07 (2007) 077
11
Solutions with this potential Mesons Baryons
12
Regge trajectories Mesons
13
Delta Regge trajectories
14
Nucleon Regge trajectories Improvement: Fit of the nucleon spectrum: Brodsky and Teramond (see arXiv:1103.1186)
15
Holographic encoding, find proper A(z) The metric of the 10 dim space of strings keep A(z) finite again calculate bulk equations (Klein Gordan, Dirac, Rarita-Schwinger,…) Find A(z) that encode the previous potentials Leads to nonlinear eq. for A(z)
16
Gravitational potential Solution baryonic sector Solutions mesonic sector numerical only poles for L=0,1 L=0 L=1 L=3 L=2 AM(z)AM(z)
17
AdS/QCD Models Hard Wall Model QCD Scale introduced by a boundary condition. Metric: Slice of AdS. The metric has Confinement by the Wilson loops area law. Does not have linear Regge Trajectories. Soft Wall Model QCD Scale introduced by a dilaton field. AdS + Dilaton is not a solution of Einstein equations The metric does not has Confinement by the Wilson analysis. Has Regge Trajectories for mesons (Barions). Polchinski, Strassler (2002) Karch, Katz, Son, Stephanov (2006) Deformed AdS model QCD Scale introduced by an IR deformation Deformed AdS is not a solution of Einstein Eq. The metric does not has Confinement by the Wilson loops analysis. Has Regge Trajectories for mesons and Barions Forkel, Beyer, Frederico (2007) Boschi, Braga (2003) Brodsky, Teramond (2003) Brodsky, Teramond (2008) Vega, Schmidt (2008) Maldacena, PRL 80, 4859 (1998); Rey and Yee, EPJC 22, 379 (2001).
18
Dynamical Soft Wall Solve Einstein's equations coupled to a dilaton field. The AdS metric is deformed in the IR limit. UV, z→0 scaling behavior IR, z → “large“ (confinement) Confining Metric AdS space with a IR deformation. Regge Trajectories will determine the IR deformation. Background Field Scalar Field (dilaton) PRD 075019 (2009) 79
19
5d Einstein Equations Dilaton potential Einstein's Equations Dilaton Equation Dilaton field Also discussed by Csaki and Reece (2007); Gursoy, Kiristsis, Nitti (2008).
20
Solutions of 5d Einstein Equation For a given warp factor A(z), the above equations give a dilaton field (and its potential) that solves the 5D Einstein equations.
21
Holographic Dual model: Hadrons in QCD (4D) correspond to the normalizable modes of 5D fields. These normalizable modes satisfy the linearized equation of motion in the background 5D-geometry. The eigenvalue corresponding to a normalizable meson mode is its square mass. Hadronic Resonances QCD Operator For Spin S= 1, 2, 3,... Karch, Katz, Son and Stephanov, PRD74, 015005 (2006).
22
Meson states in the Dilaton-Gravity Background Sturm-Liouville type eigenvalue problem for mesons Sturm-Liouville Potential Deformed AdS metric For example
23
Mass Gap Regge Trajectories Confinement and Regge Trajectories IR limit It is in agreement with the area law condition Gursoy, Kiritsis and Nitti (2008)
24
Metric Parameters Universal Effective Potential in the IR Limit for all Spins.
25
n Vector Meson Experimental Hard Wall Model Soft Wall Model Dynamical Soft Wall Model PRD 075019 (2009) 79
26
Dilaton Field for Vector Meson
27
Dynamical Soft Wall Model Experimental Data Regge Trajectories n = 1 n = 2 n = 3 n = 4 n = 5 S PRD 075019 (2009) 79
28
Light Scalar Mesons Regge slope 0.5 GeV 2 PLB 693 (2010) 287
29
Light Scalar Meson f0 Experimental Dynamical Soft Wall Model n PLB 693 (2010) 287
30
Dilaton Field for Scalar Meson
31
Pseudoscalar Mesons Universal Effective Potential in the IR Limit Zero mass for the Pion Do not affect the field UV limit as Lagrangian ~
33
Scalar Decay Width into two Pions Overlap of WF ~ Transition Amplitude Decay Width
34
Scalar Wave Functions
35
Scalar Decay Width into two Pions PLB 693 (2010) 287
36
K I=1/2 s-wave phase-shift S-wave K amplitude BaBar parametrization Proposal to interpret the scalar mesons f 0 family as radial excitations of sigma within a Dynamical AdS/QCD model Radial excitations of K*(800) W. De Paula, T. Frederico, H. Forkel and M. Beyer, Phys. Rev. D 79 (2009) 075019
37
We introduce K*(1630) and K*(1950) extending the parametrization given in the BABAR Collaboration: B. Aubert, et al., arXiv:0905.3615[hep-ex] (2009). With the S-matrix given by: K I=1/2 s-wave phase-shift
38
38 K I=1/2 s-wave phase-shift D K K D. Aston et al., Nucl. Phys. B296 (1988) 493 E. M. Aitala et al. (E791 Collaboration), Phys. Rev. Lett. 86 (2001) 765; Phys. Rev. Lett. 86 (2001) 770; Phys. Rev. Lett. 89 (2002) 121801. J. M. Link et al. (FOCUS Collaboration) Phys. Lett. B585 (2004) 200, Phys. Lett. B681 (2009)
39
D K K I=1/2 s-wave ampl. modulus
40
Baryons Mode Equation We use the Metric To obtain a Regge Trajectories That gives a complex Dilaton field!
41
1. Light meson/barion spectra encoded by Gravity/Gauge duality with a soft deformation of the AdS metric hadron dependent metric! 2. Dynamical Holographic dual model in 5 dimensions (coupled gravity dilaton) - deformed AdS metric (confinement and consistency with area law ) - Regge trajectories for light mesons S > 0 - I=0 scalars and radial excitations & S PP decay width - I=1/2 scalars and S-wave K-Pi scattering - meson dependent metric! - nucleon does not fit into the model... 3. Next step: - Fields in 10d gravity models, e.g. Maldacena-Nunes, and reduction to 5d to check for hadron metric dependence in 5d-models... Summary
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.