Download presentation
Presentation is loading. Please wait.
Published byDerek Wilson Modified over 8 years ago
1
Investigation of conducting polymers by computer simulations Regina Burganova Supervisor: Tayurskii D.A. Erokhin V.V. Scientific consultant: Lysogorskii Y.V.
2
Can plastics conduct? Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa made a breakthrough in 1977 Nobel Prize in Chemistry in 2000 for the discovery and development of electronically conductive polymers
3
Conjugated polymers Different class of materials: π-conjugated systems Alternate single-double bonds Exhibit the electrical and optical properties of metals or semiconductors upon doping
4
Doping of conjugated polymers
5
Practical application Solar cells Biosensors Color displays Organic memristor… Why polymers? Low cost Easy synthesis/processability Transparent Mechanical properties *V.Erokhin, "Organic memristors: Basic principles." In Circuits and Systems (ISCAS), 5-8. (2010). [*]
6
Polyaniline General structural formula: Environmental stability Controllable electrical conductivity Interesting redox properties High conductivity in doped state A-B type of polymer First proton doped polymer the most stable in air!
7
Polyaniline doping ACID-BASE CHEMISTRY (proton doping) REDOX CHEMISTRY (charge transfer) Emeraldine base Leucoemeraldine base Conductivity ~ 10 -10 Sm/cm Conductivity ~ 400 Sm/cm Emeraldine salt
8
Band structure of doped polyaniline 0.65 eV Stafström, S., et al. "Polaron lattice in highly conducting polyaniline: theoretical and optical studies." Physical Review Letters 59.13 (1987): 1464.
9
EPR signal Epstein, A. J., et al. "Insulator-to-metal transition in polyaniline." Synthetic Metals 18.1 (1987): 303-309.
10
Protonation mechanism Two-step transition from isolated, doubly charged, spinless bipolarons to a polaronic metal: (i) Instability of a bipolaron on a chain (ii) formation of two polarons (iii) separation of polarons, polaronic lattice Is polaron lattice energetically favorable? MacDiarmid, A. G., et al. "Polyaniline: a new concept in conducting polymers."Synthetic Metals 18.1 (1987): 285-290. Emeraldine base Bipolaron lattice Polaron lattice
11
Goal To investigate polyaniline by means of ab- initio methods: Geometric structure; Electronic structure; Vibrational properties.
12
DFT vs DFTB High accuracy Restricted computational efficiency High computational efficiency Kohn, W., & Sham, L. J. (1965), Physical review, 140(4A), A1133. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim (1998), Physical Review B, 58(11), 7260.
13
Simulation details DFT: VASP (MedeA env.), GGA-PBE functional; DFTB: DFTB+ with Slater-Koster parameters (3ob-3-1 set);
14
c G (0,0,0)B (0.5,0,0) Emeraldine base infinite chain c=20.2 A
15
Band structure/Density of States/Charge distribution HOMO LUMO 0.90 eV 2.93 eV *Huang, W. S., and A. G. MacDiarmid. "Optical properties of polyaniline." Polymer 34.9 (1993): 1833-1845. [*] G (0,0,0)B (0.5,0,0)
16
Polaron lattice Bipolaron lattice c ~ 20.6 A ΔE P-B = 2.1 meV Emeraldine salt: Polaron vs Bipolaron lattice
17
Bond lengths
18
Band structure/Density of States/Charge distribution G (0,0,0)B (0.5,0,0) Bipolaron lattice Polaron lattice HOMO LUMO HOMO LUMO
19
Crystalline structure of polyaniline I class: ES-I -> EB-I (amorphous) II class: EB-I -> ES-II’ -> -> ES-II (50% crystalline) Realistic 3D polymer model Pouget, J. P., et al. "X-ray structure of polyaniline." Macromolecules 24.3 (1991): 779-789. ES-II ES-I EB-II
20
Nonshifted chains a = 5.75 A* b = 7.80 A* c = 20.2 A Shifted chains 3D Emeraldine base *Pouget, J. P., et al. "X-ray structure of polyaniline." Macromolecules 24.3 (1991): 779-789.
21
a = 7.90 A* c = 20.6 A b = 7.10 A* Nonshifted chains Shifted chains *Pouget, J. P., et al. "X-ray structure of polyaniline." Macromolecules 24.3 (1991): 779-789. 3D Emeraldine salt: Polaronic lattice
22
a= 7.90 A* c = 20.6 A b = 7.10 A* Nonshifted chainsShifted chains 3D Emeraldine salt: Bipolaronic lattice *Pouget, J. P., et al. "X-ray structure of polyaniline." Macromolecules 24.3 (1991): 779-789.
23
Emeraldine base Polaron lattice Bipolaron lattice 3D polyaniline energy
24
Vibrational properties: Emeraldine base Scaling factor = 0.96295 *Berzina, T., Erokhin, V., & Fontana, M. P. (2007). Journal of applied physics, 101(2), 024501.
25
Vibrational properties: Emeraldine salt Scaling factor = 0.96975 *Berzina, T., Erokhin, V., & Fontana, M. P. (2007). Journal of applied physics, 101(2), 024501.
26
Vibrational properties: Emeraldine salt Scaling factor = 0.96975 *Berzina, T., Erokhin, V., & Fontana, M. P. (2007). Journal of applied physics, 101(2), 024501.
27
IR spectrum assignments IR assignment f, cm-1 theory f, cm-1 calculationIR assignmentf, cm-1 theoryf, cm-1 calculation Aromatic ring deformation628,6802740,200406C-N stretching in QBQ1379,81811349,044803 C-H out-of-plain bending of 1,4 ring826,3481909,140354Stretching of N-B-N1502,27571551,196896 C-H out-of-plain bending of 1,2,4 ring953,6269917,2002455Stretching of N=Q=N1596,77061619,11376 C-H in-plain bending of 1,2,4 ring1103,08311093,266024H-bonded NH stretching2880,16532907,5 C-N stretching in BBB1252,53931240,443302H-bonded NH stretching3337,083180,83 C-N stretching in QBQ, QBB, BBQ1298,82251293,309257 IR assignmentf, cm-1 theory f, cm-1 calculationIR assignmentf, cm-1 theoryf, cm-1 calculation Aromatic ring deformation616,1452609,6915225C-N stretching in QBQ1496,49031562,703638 C-H out-of-plain bending of 1,4 ring820,5627752,429025Stretching of N-B-N1573,6291630,547348 C-H out-of-plain bending of 1,2,4 ring881,3094875,4030225Stretching of N=Q=N2361,4077 C-H in-plain bending of 1,2,4 ring1152,259991,4239125H-bonded NH stretching2925,772891,67 C-N stretching in BBB1246,75391249,202858H-bonded NH stretching3224,523196,38 C-N stretching in QBQ, QBB, BBQ1301,71521302,442133 PANI blue PANI green
28
Conclusions and future work DFTB gives good description of geometry and electronic properties; The calculations shows polaronic lattice is energetically more favorable than bipolaronic one; 3D PANI structures need additional investigation; Experimental PANI IR spectra assignments present in the calculated spectra, but have frequency shifts IR spectra need to be improved.
29
Simulation of Li + ion diffusion in polymers
30
Organic memristor Working principle: *V.Erokhin, "Organic memristors: Basic principles." In Circuits and Systems (ISCAS), 5-8. (2010).
31
LiClO 4 salt model Amorphous builder H 2 O /LiClO4 T=300K, Nmol=600/c LAMMPS: minimization LAMMPS: NPT dynamics for 100ps, T=300K, p=1atm Remove water FF: pcff+ initialization Molecular builder MedeA
32
PEO model FF: pcff+ initialization LAMMPS: minimization LAMMPS: NPT dynamics for 100ps, T=300K, p=1atm Polymer builder LAMMPS: NVT dynamics for 100ps, T=300K, p=1atm Molecular builder MedeA Amorphous builder T=300K, ro=1.21 mg/m 3
33
Li + diffusion in solid electrolyte model Merge LiClO 4 LAMMPS: minimization LAMMPS: NPT dynamics for 100ps, T=300K, p=1atm Diffusion: NVE dynamics for 200ps D: MSD evaluation
34
Preliminary results Exp GF NMR: D=4.323*10 -9 cm 2 /s
35
Future work Verification of results; Temperature dependence; Li + diffusion in PANI, PEO-PANI heterostructure; Diffusion in electric field; Measurements.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.