Download presentation
Presentation is loading. Please wait.
Published byChristina Parks Modified over 9 years ago
1
NA-MIC National Alliance for Medical Image Computing http://na-mic.org Engineering a Segmentation Framework Marcel Prastawa
2
National Alliance for Medical Image Computing http://na-mic.org Need for Segmentation Applications Longitudinal analysis of growth Preprocessing for shape analysis Detect pathology Fully automatic, reproducible Allow fast prototyping Execute on hundreds of datasets
3
National Alliance for Medical Image Computing http://na-mic.org Our Method: Atlas-based Brain Segmentation T1T2TissueCortex
4
National Alliance for Medical Image Computing http://na-mic.org Quick Demo
5
National Alliance for Medical Image Computing http://na-mic.org Engineering Components Filtering Inhomogeneity Correction Affine Registration Deformable Registration Segmentation Statistics Pathology Atlas
6
National Alliance for Medical Image Computing http://na-mic.org Shared Components (EMSegment) Filtering Registration Inhomogeneity Correction Statistics Atlas Pathology
7
National Alliance for Medical Image Computing http://na-mic.org Future Components New modality / information –DTI –Vessels / MRA Pathology model –Tumor biomechanical model –Lesion model New classifiers
8
National Alliance for Medical Image Computing http://na-mic.org GUI vs Batch Mode GUI for prototyping Command line for batch processing: –Use automatically generated XML file –Different input images, same parameters –Python or shell scripts
9
National Alliance for Medical Image Computing http://na-mic.org Sample XML Input [1/2] EMS /scratch/prastawa/atlases/adult-atlas RAI /scratch/prastawa/test/out GIPL /scratch/prastawa/test/T1_Orig.nrrd ASR /scratch/prastawa/test/T2_Orig.nrrd ASR...
10
National Alliance for Medical Image Computing http://na-mic.org Sample XML Input [2/2]... 1 0.01 Curvature flow 4 1.2 1 0.7 1 5
11
National Alliance for Medical Image Computing http://na-mic.org Smart Execution Fast prototyping by storing results at different stages Examples: –Store registration transforms –Store estimated intensity distributions Write new results when input parameters changed
12
National Alliance for Medical Image Computing http://na-mic.org Tumor Segmentation T13DT2 T13DT2
13
National Alliance for Medical Image Computing http://na-mic.org Neonate Segmentation T1T23D T1 T2 3D
14
National Alliance for Medical Image Computing http://na-mic.org Lupus Lesion Segmentation T2 FLAIR 3D
15
National Alliance for Medical Image Computing http://na-mic.org Discussion Integrated system for registration, bias correction, segmentation Implemented using ITK classes Cross-platform: Linux, Windows, Solaris Smart execution: stored states Shared components Slicer integration?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.