Download presentation
Presentation is loading. Please wait.
Published byProsper Harrell Modified over 9 years ago
1
X ------ = ------ Y
2
Direct variation X 1 X 2 ------ = ------ Y 1 Y 2
3
Direct variation X 1 X 2 ------ = ------ Y 1 Y 2
4
Inverse variation X 1 X 2 ------ = ------ Y 2 Y 1
5
Inverse variation X 1 X 2 ------ = ------ Y 2 Y 1
6
If y varies directly as x and y = 4 when x = 12, find y when x = 6
7
If y varies directly as x and y = 4 when x = 12, find y when x = 6 X 1 X 2 ------ = ------ Y 1 Y 2
8
If y varies directly as x and y 1 = 4 when x 1 = 12, find y 2 when x 2 = 6 X 1 X 2 ------ = ------ Y 1 Y 2
9
If y varies directly as x and y 1 = 4 when x 1 = 12, find y 2 when x 2 = 6 X 1 X 2 ------ = ------ 4 Y 2
10
If y varies directly as x and y 1 = 4 when x 1 = 12, find y 2 when x 2 = 6 12 X 2 ------ = ------ 4 Y 2
11
If y varies directly as x and y 1 = 4 when x 1 = 12, find y 2 when x 2 = 6 12 6 ------ = ------ 4 Y 2
12
4 * 6 = 12 * Y 2 12 6 ------ = ------ 4 Y 2
13
4 * 6 = Y 2 12 12 6 ------ = ------ 4 Y 2
14
24 = Y 2 12 12 6 ------ = ------ 4 Y 2
15
2 = Y 2 12 6 ------ = ------ 4 Y 2
16
2 = Y 2 12 6 ------ = ------ 4 2
17
If y varies directly as x and y = 9 when x = 3, find y when x = 60
18
If y varies directly as x and y = 11 when x = 121, find y when x = 80
19
If y varies directly as x and y = 42 when x = 7, find y when x = 3
20
If y varies inversely as x and y = 5 when x = 10, find y when x = 50
21
If y varies inversely as x and y = 5 when x = 10, find y when x = 50 X 1 X 2 ------ = ------ Y 2 Y 1
22
If y varies inversely as x and y = 900 when x = 3, find y when x = 2
23
If y varies inversely as x and y = 8 when x = 64, find y when x = 16
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.