Download presentation
Presentation is loading. Please wait.
Published byVanessa Chase Modified over 9 years ago
1
Structures for Discrete-Time Systems 主講人:虞台文
2
Content Introduction Block Diagram Representation Signal Flow Graph Basic Structure for IIR Systems Transposed Forms Basic Structure for FIR Systems Lattice Structures
3
Structures for Discrete-Time Systems Introduction
4
Characterize an LTI System Impulse Response z-Transform Difference Equation
5
Example Computable Noncomputable
6
Basic Operations Computable Addition Multiplication Delay In fact, there are unlimited variety of computational structures.
7
Why Implement Using Different Structures? Finite-precision number representation of a digital computer. Truncation or rounding error. Modeling methods: – Block Diagram – Signal Flow Graph
8
Block Diagram Representation + x1(n)x1(n) x2(n)x2(n) x 1 (n) + x 2 (n) Adder x(n)x(n) a ax(n) Multiplier x(n)x(n) x(n1)x(n1) z1z1 Unit Delay
9
Example x(n)x(n) + + b a1a1 z1z1 z1z1 a2a2 y(n)y(n) y(n1)y(n1) y(n2)y(n2)
10
Higher-Order Difference Equations
11
Block Diagram Representation (Direct Form I) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n)
12
+ z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n)
13
+ z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n)
14
+ z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n) Implementing zeros Implementing poles
15
Block Diagram Representation (Direct Form I) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bM1bM1 bMbM x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nM)x(nM) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) y(n1)y(n1) y(n2)y(n2) y(nM)y(nM) v(n)v(n) How many Adders? How many multipliers? How many delays? How many Adders? How many multipliers? How many delays?
16
Block Diagram Representation (Direct Form II) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) w(n1)w(n1) w(n2)w(n2) w(nN)w(nN) w(n)w(n) Assume M = N
17
Block Diagram Representation (Direct Form II) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) w(n1)w(n1) w(n2)w(n2) w(nN)w(nN) w(n)w(n) Assume M = N
18
Block Diagram Representation (Direct Form II) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) w(n1)w(n1) w(n2)w(n2) w(nN)w(nN) w(n)w(n) Assume M = N Implementing zeros Implementing poles
19
Block Diagram Representation (Direct Form II) + z1z1 z1z1 + z1z1 + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) w(n1)w(n1) w(n2)w(n2) w(nN)w(nN) w(n)w(n) Assume M = N How many Adders? How many multipliers? How many delays? How many Adders? How many multipliers? How many delays?
20
Block Diagram Representation (Canonic Direct Form) + + + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) Assume M = N
21
Block Diagram Representation (Canonic Direct Form) + + + b0b0 b1b1 bN1bN1 bNbN x(n)x(n) + z1z1 z1z1 + z1z1 + a1a1 aN1aN1 aNaN y(n)y(n) Assume M = N How many Adders? How many multipliers? How many delays? max(M, N) How many Adders? How many multipliers? How many delays? max(M, N)
22
Structures for Discrete-Time Systems Signal Flow Graph
23
Nodes And Branches wj(n)wj(n) wk(n)wk(n) Associated with each node is a variable or node value.
24
Nodes And Branches wj(n)wj(n) wk(n)wk(n) Brach ( j, k ) Each branch has an input signal and an output signal. Input w j (n) Output: A linear transformation of input, such as constant gain and unit delay.
25
More on Nodes wj(n)wj(n) wk(n)wk(n) An internal node serves as a summer, i.e., its value is the sum of outputs of all branches entering the node.
26
Source Nodes Nodes without entering branches xj(n)xj(n)wk(n)wk(n) Source node j
27
Sink Nodes Nodes that have only entering branches yk(n)yk(n)wj(n)wj(n) Sink node k
28
Example x(n)x(n) y(n)y(n)w1(n)w1(n) w2(n)w2(n) a b c d e Source Node Sink Node
29
Block Diagram vs. Signal Flow Graph x(n)x(n) + a z1z1 + b1b1 b0b0 w(n)w(n)y(n)y(n) x(n)x(n) w1(n)w1(n) w2(n)w2(n)w3(n)w3(n) a b1b1 b0b0 z1z1 1 2 3 4 w4(n)w4(n) y(n)y(n)
30
x(n)x(n) + a z1z1 + b1b1 b0b0 w(n)w(n)y(n)y(n) x(n)x(n) w1(n)w1(n) w2(n)w2(n)w3(n)w3(n) a b1b1 b0b0 z1z1 1 2 3 4 w4(n)w4(n) y(n)y(n)
32
Structures for Discrete-Time Systems Basic Structure for IIR Systems
33
Criteria Reduce the number of constant multipliers – Increase speed Reduce the number of delays – Reduce the memory requirement Modularity: VLSI design The effects of finite register length and finite- precision arithmetic.
34
Basic Structures Direct Forms Cascade Form Parallel Form
35
Direct Forms
36
Direct Form I b0b0 b1b1 x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nN)x(nN) y(n)y(n) b2b2 b N-1 bNbN x(n N+1) a1a1 a2a2 a N-1 aNaN y(n1)y(n1) y(n2)y(n2) y(nN)y(nN) y(n N+1) z1z1 z1z1 z1z1 z1z1 z1z1 z1z1 v(n)v(n)
37
Direct Form I b0b0 b1b1 x(n)x(n) x(n1)x(n1) x(n2)x(n2) x(nN)x(nN) y(n)y(n) b2b2 b N-1 bNbN x(n N+1) a1a1 a2a2 a N-1 aNaN y(n1)y(n1) y(n2)y(n2) y(nN)y(nN) y(n N+1) z1z1 z1z1 z1z1 z1z1 z1z1 z1z1 v(n)v(n)
38
Direct Form II x(n)x(n) y(n)y(n) w(n)w(n) b0b0 b1b1 b2b2 b N-1 bNbN a1a1 a2a2 a N-1 aNaN z1z1 z1z1 z1z1
39
Direct Form II x(n)x(n) y(n)y(n) w(n)w(n) b0b0 b1b1 b2b2 b N-1 bNbN a1a1 a2a2 a N-1 aNaN z1z1 z1z1 z1z1
40
Example x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 z1z1 0.75 0.125 2 x(n)x(n) y(n)y(n) z1z1 z1z1 0.75 0.125 2 Direct Form I Direct Form II
41
Cascade Form
43
2nd Order System 2nd Order System 2nd Order System 2nd Order System 2nd Order System 2nd Order System
44
Cascade Form x(n)x(n)y(n)y(n) z1z1 z1z1 a 11 a 21 b 11 b 21 b 01 z1z1 z1z1 a 12 a 22 b 12 b 22 b 01 z1z1 z1z1 a 13 a 23 b 13 b 23 b 03
45
Another Cascade Form
46
Parallel Form
47
Real Poles Complex Poles Poles at zero Group Real Poles
48
Parallel Form z1z1 z1z1 a1ka1k a2ka2k e0ke0k e1ke1k
49
x(n)x(n) y(n)y(n)
50
Example 8 x(n)x(n)y(n)y(n) z1z1 z1z1 0.75 0.125 8 77
51
Example z1z1 0.5 18 8 x(n)x(n)y(n)y(n) z1z1 0.25 25
52
Structures for Discrete-Time Systems Transposed Forms
53
Signal Flow Graph Transformation To transform signal graphs into different forms while leaving the overall system function between input and output unchanged.
54
Transposition of Signal Flow Graph Reverse the directions of all arrows. Changes the roles of input and output. x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n) z1z1 a
55
Transposition of Signal Flow Graph x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n) z1z1 a Are there any relations between the two systems?
56
Example: z1z1 a x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n)
57
Transposition of Signal Flow Graph Reverse the directions of all arrows. Changes the roles of input and output. x(n)x(n)y(n)y(n) z1z1 a x(n)x(n)y(n)y(n) z1z1 a Detail proof see reference
58
Structures for Discrete-Time Systems Basic Structure for FIR Systems
59
FIR For causal FIR systems, the system function has only zeros.
60
Direct Form x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M)
61
x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M) Direct Form x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M)
62
x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M) Direct Form x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 h(0)h(1)h(2) h(M1)h(M1) h(M)h(M)
63
Cascade Form
64
x(n)x(n) y(n)y(n) z1z1 z1z1 b 01 b 11 b 21 z1z1 z1z1 b 02 b 12 b 22 z1z1 z1z1 b 1Ms b 2Ms b 0Ms
65
M is evenM is odd h(M n) = h(n) h(M n) = h(n) Structures for Linear Phase Systems A generalized linear phase system satisfies: h(M n) = h(n) for n = 0,1,…,M h(M n) = h(n) for n = 0,1,…,M or Type I Type III Type II Type VI
66
Type I
67
x(n)x(n) y(n)y(n) z1z1 z1z1 z1z1 z1z1 z1z1 z1z1 h(M/2) h(M/2 1) h(0) h(1)h(2)
68
Type II, III and VI Construct them in a similar manner by yourselves.
69
Structures for Discrete-Time Systems Lattice Structures
70
FIR Lattice Consider x(n)= (n), one will see
71
FIR Lattice Consider x(n)= (n), one will see
72
FIR Lattice Consider x(n)= (n), one will see
73
FIR Lattice Define Consider x(n)= (n), one will see
74
FIR Lattice Show that Define
75
FIR Lattice i=1: Show that
76
FIR Lattice i = n: Assumed true Show that i = n+1 also true. Prove
77
FIR Lattice =
79
m=0 1111111 k1k1 k2k2 k3k3 k4k4 k5k5 k6k6 m=1 m=2 m=3 m=4 m=5 m=6 Given the lattice, to find A(z).
80
FIR Lattice Given A(z), to find the lattice. m=0 1111111 m=1 m=2 m=3 m=4 m=5 m=6
81
m=0 1111111 m=1 m=2 m=3 m=4 m=5 m=6 FIR Lattice Given A(z), to find the lattice.
82
Example 1 1 1 1 1 1 1 1 m=0 m=1 m=2 m=3 0.6728 0.7952 0.1820 0.9 0.64 0.576
83
Example 0.576 0.1820 0.6728 1 1 1 1 1 1 1 1 m=0 m=1 m=2 m=3 0.6728 0.7952 0.1820 0.9 0.64 0.576
84
Inverse Filter
85
All-Pole Filter
89
Example 0.6728 0.6728 0.1820 0.1820 0.576 0.576 0.1820 0.6728
90
Example 0.6728 0.6728 0.1820 0.1820 0.576 0.576 0.9 0.64 0.576
91
Stability of All-Pole Filter All zeros of A(z) have to lie within the unit circle. Necessary and sufficient conditions: All of k-parameters k i ’s satisfy |k i | < 1.
92
Normalized Lattice
94
Section i
95
Normalized Lattice Section N Section N 1 Section 1 Section i
96
Normalized Lattice Section i Three-Multiplier Form
97
Normalized Lattice Four-Multiplier, Normalized Form Four-Multiplier, Kelly-Lochbaum Form Three-Multiplier Form
98
Normalized Lattice Section N Section N 1 Section 1 Three-Multiplier Form
99
Normalized Lattice Section N Section N 1 Section 1 Four-Multiplier, Normalized Form
100
Normalized Lattice Section N Section N 1 Section 1 Four-Multiplier, Kelly-Lochbaum Form
101
Lattice Systems with Poles and Zeros Section N 1 Section 1 Section N c0c0 c1c1 cN2cN2 cN1cN1 cNcN
102
Lattice Systems with Poles and Zeros Section N 1 Section 1 Section N c0c0 c1c1 cN2cN2 cN1cN1 cNcN
103
Lattice Systems with Poles and Zeros
104
Example 0.6728 0.6728 0.1820 0.1820 0.576 0.576 c3c3 c2c2 c1c1 c0c0
105
0.6728 0.6728 0.1820 0.1820 0.576 0.576 c3c3 c2c2 c1c1 c0c0 Example 1 1 1 1 1 1 1 1 m=0 m=1 m=2 m=3 0.6728 0.7952 0.1820 0.9 0.64 0.576
106
0.6728 0.6728 0.1820 0.1820 0.576 0.576 13.95.46124.5404 Example
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.