Download presentation
Presentation is loading. Please wait.
Published byLeo Stephens Modified over 9 years ago
1
- Type of Study Composite Interval Mapping Program - Genetic Design
2
- Data and Options Map Function Parameters Here for Simulation Study Only QTL Searching StepcM Cumulative Marker Distance (cM) Composite Interval Mapping Program
3
- Data Put Markers and Trait Data into box below OR Composite Interval Mapping Program
4
- Analyze Data Composite Interval Mapping Program For CIM, Controlled Background Markers by Within cM Or Markers
5
- Profile Composite Interval Mapping Program
6
- Permutation Test #Tests Cut Off Point at Level Is Based on Tests. Composite Interval Mapping Program
7
Backcross Population – Two Point FreqQqqq Mm1/2(1-r)/2r/2 mm1/2r/2(1-r)/2
8
Backcross Population – Three Point FreqQqqq MmNn(1-r)/2(1-r 1 )(1-r 2 )r 1 *r 2 Mmnnr/2(1-r 1 )r 2 r 1 (1-r 2 ) mmNnr/2r 1 (1-r 2 )(1-r 1 )r 2 mmnn(1-r)/2r1*r2(1-r)/2 M Q N
9
F2 Population – Two Point FreqQQQqqq MM1/4(1-r) 2 /4(1-r)r/2r 2 /4 Mm1/2(1-r)r/2½-(1-r)r(1-r)r/2 mm1/4r 2 /4(1-r)r/2(1-r) 2 /4
10
F2 Population – Three Point FreqQQQqqq MMNN(1-r) 2 /4 1/4(1-a) 2 (1-b) 2 1/2a(1-a)b(1-b)1/4a 2 b 2 Nn(1-r)r/2 1/2(1-a) 2 b(1-b)1/2a(2b 2 - 2b+1)(1-a) 1/2a 2 b(1-b) nnr 2 /4 1/4(1-a) 2 b 2 1/2a(1-a)b(1-b)1/4a 2 (1-b) 2 MmNN(1-r)r/2 1/2a(1-a)(1-b) 2 1/2b(1- 2a+2a 2 )(1-b) 1/2a(1-a)b 2 Nn ½-(1-r)r a(1-a)b(1-b)1/2(2b 2 - 2b+1)(1-2a+2a 2 ) a(1-a)b(1-b) Nn(1-r)r/2 1/2a(1-a)b 2 1/2b(1- 2a+2a 2 )(1-b) 1/2a(1-a)(1-b) 2 mmNNr 2 /4 1/4a 2 (1-b) 2 1/2a(1-a)b(1-b)1/4(1-a) 2 b 2 Nn(1-r)r/2 1/2a 2 b(1-b)1/2a(2b 2 - 2b+1)(1-a) 1/2(1-a) 2 b(1-b) nn(1-r) 2 /4 1/4a 2 b 2 1/2a(1-a)b(1-b)1/4(1-a) 2 (1-b) 2 M a Q b N r=a+b-2ab
11
Composite model for interval mapping and regression analysis y i = + a* z i + k m-2 b k x ik + e i Expected means: Qq: + a* + k b k x ik = a* + X i B qq: + k b k x ik = X i B X i = (1, x i1, x i2, …, x i(m-2) ) 1x(m-1) B = ( , b 1, b 2, …, b m-2 ) T z i : QTL genotype x ik : marker genotype M 1 x 1 M 1 m 1 1 +b 1 m 1 m 1 0
12
z i – conditional probability of Qq given markers of individual i and QTL position x ik – coding for ‘effect’ of k-th marker of i Backcross: x ik =1 if k-th marker of i is Mm =0 or –1 if k-th marker of i is mm k m-2 – summation over all markers except two markers of current interval We want estimate a* and test if abs(a*) is big enough to claim that there is a QTL at the given location in an interval. The estimate B is not very important
13
Likelihood based CIM L(y,M| ) = i=1 n [ 1|i f 1 (y i ) + 0|i f 0 (y i )] log L(y,M| ) = i=1 n log[ 1|i f 1 (y i ) + 0|i f 0 (y i )] f 1 (y i ) = 1/[(2 ) ½ ]exp[-½(y- 1 ) 2 ], 1 = a*+X i B f 0 (y i ) = 1/[(2 ) ½ ]exp[-½(y- 0 ) 2 ], 0 = X i B Define 1|i = 1|i f 1 (y i )/[ 1|i f 1 (y i ) + 0|i f 0 (y i )](1) 0|i = 0|i f 1 (y i )/[ 1|i f 1 (y i ) + 0|i f 0 (y i )](2)
14
a* = i=1 n 1|i (y i -a*-X i B)/ i=1 n 1|i (3) = 1 (Y-XB)´/c B = (X´X) -1 X´(Y- 1 a*) (4) 2 = 1/n (Y-XB)´(Y-XB) – a* 2 c (5) = ( i=1 n2 1|i + i=1 n3 0|i )/(n 2 +n 3 )(6) Y = {y i } nx1, = { 1|i } nx1, c = i=1 n 1|i
15
Hypothesis test H0: a*=0 vs H1: a* 0 L0 = i=1 n f(y i ) B = (X´X) -1 X´Y, 2 = 1/n(Y-XB)´(Y-XB) L1= i=1 n [ 1|i f 1 (y i ) + 0|i f 0 (y i )] LR = -2(lnL0 – lnL1) LOD = -(logL0 – logL1)
16
Likelihood based CIM for BC and F2 L(y,M| ) = i=1 n k=1 g [ k|i f k (y i )] log L(y,M| ) = i=1 n log[ k=1 g k|i f k (y i )] g=2 for BC, 3 for F2 f k (y i ) = 1/[(2 ) ½ ]exp[-½(y- k ) 2 ], k = g k +X i B k=1,…,g
17
Define k|i = k|i f 1 (y i )/[ k=1 g k|i f 1 (y i )] (1) B = k=1 g k (X´X) -1 X´(Y- g k ) (2) g k = i=1 n k|i (y i -X i B)/ i=1 n k|i (3) 2 = 1/n i=1 n k=1 g k|i (y i -X i B - g k ) 2 (4) Y = {y i } nx1, k = { k|i } nx1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.