Download presentation
Presentation is loading. Please wait.
Published byBethany Greer Modified over 9 years ago
1
FastOpt CAMELS A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr 1, Marko Scholze 2, Peter Rayner 3,Thomas Kaminski 4, Ralf Giering 4 1 234
2
FastOpt CAMELS Overview Top-down vs. bottom-up Gradient method and optimisation Results: Optimal fluxes Uncertainties in parameters + results Uncertainties in fluxes + results Possible assimilation of flux data Conclusions and Outlook
3
FastOpt CAMELS Top-down / Bottom-up atm. CO 2 data inverse atmospheric transport modelling net CO2 fluxes at the surface process model climate and other driving data
4
FastOpt CAMELS Carbon Cycle Data Assimilation Biosphere Model: BETHY Atmospheric Transport Model: TM2 Misfit to Observations Parameters: 58 Fluxes: 800,000 Station Conc. 6,500 Misfit 1 Forward modelling: Parameters –> Misfit Adjoint or Tangent linear model: Misfit / ∂ Parameters parameter optimization
5
FastOpt CAMELS Figure taken from Tarantola '87 Space of m (model parameters) First derivative (Gradient) of J(m) w.r.t. m (model parameters) : –∂J(m)/∂m yields direction of steepest descent Gradient Method Cost Function J(m)
6
FastOpt CAMELS Carbon Cycle Data Assimilation System (CCDAS) CCDAS Step 2 BETHY+TM2 only Photosynthesis, Energy&Carbon Balance CO 2 + Uncert. Optimized Params + Uncert. Diagnostics + Uncert. veg. index satellite + Uncert. CCDAS Step 1 full BETHY Phenology Hydrology Assimilated Prescribed Assimilated Background CO 2 fluxes* * * ocean: Takahashi et al. (1999), LeQuere et al. (2000); emissions: Marland et al. (2001), Andres et al. (1996); land use: Houghton et al. (1990)
7
FastOpt CAMELS BETHY (Biosphere Energy-Transfer-Hydrology Scheme) GPP: C3 photosynthesis – Farquhar et al. (1980) C4 photosynthesis – Collatz et al. (1992) stomata – Knorr (1997) R aut : maintenance respiration = f(N leaf, T) – Farquhar, Ryan (1991) growth respiration ~ NPP – Ryan (1991) R het : fast/slow pool resp. = w Q 10 T/10 C fast/slow / fast/slow slow –> infin. average NPP = average R het (at each grid point) <1: source >1: sink t=1h t=1day lat, lon = 2 deg
8
FastOpt CAMELS Optimisation
9
FastOpt CAMELS Optimised fluxes (1) global fluxes Major El Niño events Major La Niña event Post Pinatubo Period
10
FastOpt CAMELS Optimised fluxes (2) normalized CO 2 flux and ENSO ENSO and terr. biosph. CO 2 : correlation seems strong lag correlation (low-pass filtered) correlation between Niño-3 SST anomaly and net CO 2 flux shows maximum at 4 months lag, for both El Niño and La Niña states
11
FastOpt CAMELS net CO 2 flux to atm. gC / (m 2 month) during El Niño (>+1 ) Optimised fluxes (3) lagged correlation at 99% significance -0.8-0.400.40.8 flux sites?
12
FastOpt CAMELS Figure taken from Tarantola '87 J(x) Second Derivative (Hessian) of J(m): ∂ 2 J(m)/∂m 2 yields curvature of J, provides estimated uncertainty in m opt Error Covariances in Parameters Space of m (model parameters)
13
FastOpt CAMELS Error Covariances in Parameters examples: Cost function (misift): model diagnostics error covariance matrix of measurements measurements assumed model parameters a priori covariance matrix of parameter + model error a priori parameter values Error covariance of parameters after optimisation: = inverse Hessian
14
FastOpt CAMELS Relative Error Reduction
15
FastOpt CAMELS Error Covariances in Diagnostics Error covariance of diagnostics, y, after optimisation (e.g. CO 2 fluxes): error covariance of parameters adjoint or tangent linear model
16
FastOpt CAMELS Regional Net Carbon Balance and Uncertainties
17
FastOpt CAMELS Comparison shows impact of a (pseudo) flux measurement in the broadleaf evergreen biome on Q10 estimated by an inversion of SDBM: Upper panel: only concentration data Lower panel: concentration data + pseudo flux measurement (mean: as predicted sigma: 10gC/m^2/year) Details: Kaminski et al., GBC, 2001 a posteriori mean/uncertainties a priori mean/uncertainties
18
FastOpt CAMELS CCDAS with 58 parameters can already fit 20 years of CO 2 concentration data Sizeable reduction of uncertainty for ~13 parameters terr. biosphere response to climate fluctuations dominated by ENSO System can test model with uncertain parameters, and deliver a posteriori uncertainties on parameters, fluxes Conclusions
19
FastOpt CAMELS explore more parameter configurations include fire as a process with uncertainties need more constraints, e.g. eddy fluxes –> reduce uncertainties however: needs to solve scaling problem (satellites?) approach can be regionalized easily extend approach to ocean carbon cycle projection of uncertainties into future Outlook
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.