Presentation is loading. Please wait.

Presentation is loading. Please wait.

Accretion High Energy Astrophysics

Similar presentations


Presentation on theme: "Accretion High Energy Astrophysics"— Presentation transcript:

1 Accretion High Energy Astrophysics emp@mssl.ucl.ac.uk http://www.mssl.ucl.ac.uk/

2 Introduction Mechanisms of high energy radiation X-ray sources Supernova remnantsPulsars thermal synchrotron loss rotational energy magnetic dipole

3 Accretion onto a compact object Principal mechanism for producing high- energy radiation Most efficient of energy production known in the Universe. Gravitational potential energy released for body mass M and radius R when mass m accreted

4 Example - neutron star Accreting mass m=1kg onto a neutron star: neutron star mass = 1 solar mass R = 10 km => ~10 m Joules, ie approx 10 Joules per kg of accreted matter - as electromagnetic radiation R M m 16

5 Efficiency of accretion Compare this to nuclear fusion H => He releases ~ 0.007 mc ~ 6 x 10 m Joules - 20x smaller (for ns) 2 14 So energy released proportional to M/R ie the more compact a body is, the more efficient accretion will be.

6 Accretion onto white dwarfs For white dwarfs, M~1 solar mass and R~10,000km so nuclear burning more efficient by factor of ~50. Accretion still important process however - nuclear burning on surface => nova outburst - accretion important for much of lifetime

7 Origin of accreted matter Given M/R, luminosity produced depends on accretion rate, m. Where does accreted matter come from? ISM? No - too small. Companion? Yes...

8 Accretion onto AGN Active Galactic Nuclei, M ~ 10 solar mass - very compact, very efficient (cf nuclear) - accretes surrounding gas and stars 9

9 Fuelling a neutron star Mass = 1 solar mass observed luminosity = 10 J/s (in X-rays) Accretion produces ~ 10 J/kg m = 10 / 10 kg/s ~ 3 x 10 kg/year ~ 10 solar masses per year 31 16 311622 -8.

10 The Eddington Luminosity There is a limit to which luminosity can be produced by a given object, known as the Eddington luminosity. Effectively this is when the inward gravitational force on matter is balanced by the outward transfer of momentum by radiation.

11 Eddington Luminosity Outgoing photons from M scatter material (electrons and protons) accreting. r M m F grav F rad Accretion rate controlled by momentum transferred from radiation to mass Note that R is now negligible wrt r

12 Scattering L = accretion luminosity Scattering cross-section will be Thomson cross-section  ; so no. scatterings per sec: photons m s no. photons crossing at r per second -2 e

13 Momentum transferred from photon to particle: Momentum gained by particle per second = force exerted by photons on particles h e-, p

14 Eddington Limit radiation pressure = gravitational pull At this point accretion stops, effectively imposing a ‘limit’ on the luminosity of a given body. So the Eddington luminosity is:

15 Assumptions made Accretion flow steady + spherically symmetric: eg. in supernovae, L exceeded by many orders of magnitude. Material fully ionized and mostly hydrogen: heavies cause problems and may reduce ionized fraction - but OK for X-ray sources Edd

16 What should we use for m? Electrostatic forces between e- and p binds them so act as a pair. Thus: M Joule/sec Joule/sec

17 Black Holes Black hole does not have hard surface - so what do we use for R? Use efficiency parameter,  at a maximum  = 0.42, typically  = 0.1 solar mass bh as efficient as neutron star then.

18 Emitted Spectrum define temperature T such that h ~kT define ‘effective’ BB temp T thermal temperature, T such that: rad b th =>

19 Accretion temperatures Flow optically-thick: Flow optically-thin:

20 Accretion energies In general, For a neutron star, assuming

21 Neutron star spectrum Thus expect photon energies in range: similarly for a stellar mass black hole For white dwarf, L ~10 J/s, M~M, R=5x10 m, => optical, UV, X-ray sources acc 26 Sun 6

22 Accretion modes in binaries ie. binary systems which contain a compact star, either white dwarf, neutron star or black hole. (1) Roche Lobe overflow (2) Stellar wind - correspond to different types of X-ray binaries

23 Roche Lobe Overflow Compact star M and normal star M normal star expanded or binary separation decreased => normal star feeds compact 12 + CM MM 12 a

24 Roche equipotentials Sections in the orbital plane +++ M M 1 2CM L 1 v

25 Accretion disk formation Matter circulates around the compact object: matter inwards ang mom outwards

26 Material transferred has high angular momentum so must lose it before accreting => disk forms Gas loses ang mom through collisions, shocks and viscosity: kinetic energy converted into heat and radiated. Matter sinks deeper into gravity of compact object

27 Disk Luminosity The total energy available from the accretion of mass m onto M with radius R is: But not all of this has to be lost (ie radiated from) the accretion disk – there may be other processes involved… E acc = GMm R

28 Energy losses from the disk E bind = GMm 2R E bind ~ 0 R and L bind = GMM 2R So the energy which has been lost in the disk by m is: E disk = GMm 2R and L disk = GMM 2R = ½L acc

29 Disk structure The other half of the accretion luminosity is released very close to the star. X-ray UV optical Hot, optically-thin inner region; emits bremsstrahlung Outer regions are cool, optically-thick and emit blackbody radiation bulge

30 Stellar Wind Model Early-type stars have intense and highly supersonic winds. Mass loss rates - 10 to 10 solar masses per year. For compact star - early star binary, compact star accretes if -6 -5 GMm r > 1212 m(v + v ) 22 wns

31 Thus : r acc = 2GM v + v 22 wns bow shock matter collects in wake r acc

32 Stellar wind model cont. Process much less efficient than Roche lobe overflow, but mass loss rates high enough to explain observed luminosities. 10 solar masses per year is required to produce X-ray luminosities of 10 J/s. -8 31

33 Magnetic neutron stars For neutron star with strong mag field, disk disrupted in inner parts. This is where most radiation is produced. Compact object spinning => X-ray pulsator Material is channeled along field lines and falls onto star at magnetic poles

34 ‘Spin-up pulsars’ Primary accretes material with angular momentum => primary spins-up (rather than spin-down as observed in pulsars) Rate of spin-up consistent with neutron star primary (white dwarf would be slower) Cen X-3 ‘classical’ X-ray pulsator

35 Types of X-ray Binaries Group I Group II Luminous (early, Optically faint (blue) massive opt countpart) opt counterpart (high-mass systems) (low-mass systems) hard X-ray spectra soft X-ray spectra (T>100 million K) (T~30-80 million K) often pulsating non-pulsating X-ray eclipses no X-ray eclipses Galactic plane Gal. Centre + bulge Population I older, population II


Download ppt "Accretion High Energy Astrophysics"

Similar presentations


Ads by Google