Download presentation
1
Dirichlet Distribution
M. Farrow, MAS3301 Bayesian Statistics, Newcastle University B. A. Frigyik, A. Kapila, and M. a R. Gupta. Introduction to the Dirichlet Distribution and Related Processes, University of Washington Department of Electrical Engineering, 2012. Feb 26, 2015 Hee-Gook Jun
2
Outline Bernoulli Distribution Binomial Distribution
Multinomial Distribution Beta Distribution Dirichlet Distribution
3
Distribution Function vs. Linear Function
𝒇 𝒙 =𝒂𝒙+𝒃 Distribution function Random variable: x Parameter: a, b Linear function Variable: x Constant: a, b Binomial dist. function: 𝑿~𝑩 𝒑 =𝒇(𝒙;𝒑) Gaussian dist. function: 𝑿~𝑵 𝝁, 𝝈 𝟐 =𝐟(𝐱;𝝁, 𝝈 𝟐 ) 𝝁↓ 𝝈 𝟐 ↑ 𝝁 ↑ 𝝈 𝟐 ↓
4
Bernoulli Distribution
Random variable: X = {0,1} Parameter: 0 < p < 1 Sample space (support): x ∈ {0,1} (when p is 0.5) 0.5 pmf If success, 𝑓(𝑥; 𝑝) = 𝑝 If fail, 𝑓(𝑥; 𝑝) = 1 − 𝑝 1 𝑓(𝑥; 𝑝) = 𝑝 𝑥 (1−𝑝) 1−𝑥 cdf 𝑓𝑜𝑟 𝑥< −𝑝 𝑓𝑜𝑟 0≤𝑥≤ 𝑓𝑜𝑟 𝑥 ≥1 F 𝑥;𝑝 =𝑃 𝑋≤𝑥 = 1 1
5
Binomial Distribution
Random variable: X = # of successes in n trials Parameter n: # of trials p: success probability in each trial Sample space: x ∈ {0,…,n} 𝑓 𝑥;𝑛, 𝑝 =𝑃 𝑋=𝑥 = 𝑛 𝑥 𝑝 𝑥 (1−𝑝) 𝑛−𝑥 pmf F 𝑘;𝑛,𝑝 =𝑃 𝑋≤𝑘 = 𝑖=0 𝑘 𝑛 𝑖 𝑝 𝑖 (1−𝑝) 𝑛−𝑖 cdf에서 수식 헷갈릴거 같아 x대신 k 씀. 의미는 그대로임 cdf 𝑿 𝟏 , 𝑿 𝟐 ,…, 𝑿 𝒏 ~𝑩𝒆𝒓 𝜽 ⇔ 𝒀~𝑩𝒊𝒏 𝒏,𝜽
6
Binomial Distribution: the parameter
Distribution’s shape is changed by the p p < 0.5 skewed left p = 0.5 symmetric p > 0.5 skewed right p 마다 pdf 형태 달라진다 → p 도 분포 가질 수 있다!
7
Beta Distribution: distribution of probability
Beta dist. provide a family of conjugate prior probability distributions in Bayesian inference The domain of the beta dist. can be viewed as a probability, and in fact beta dist. is often used to describe the distribution of a probability value p 𝑿~𝑩𝒊𝒏 𝒏,𝒑 P ~𝑩𝒆𝒕𝒂(𝜶,𝜷) 𝑿~𝑩𝒊𝒏 𝒏,𝜽 Θ ~𝑩𝒆𝒕𝒂(𝜶,𝜷) 𝒇 𝒙; 𝒏,𝜽 𝒇(𝜽; 𝜶,𝜷)
8
Parameters of Gaussian Distribution
𝑓 𝑥;𝜇, 𝜎 2 = 1 𝜎 2𝜋 𝑒 − 𝑥−𝜇 𝜎 2
9
Parameters of Binomial Distribution
𝑓 𝑥;𝑛, 𝑝 = 𝑛 𝑥 𝑝 𝑥 (1−𝑝) 𝑛−𝑥
10
Parameters of Beta Distribution
Θ ~𝐵𝑒𝑡𝑎(𝛼,𝛽)
11
Beta Distribution: Gamma Function and Beta Function
Extension of the factorial function Γ(𝑛) = (n−1)! Beta function Binomial coefficient after adjusting indices Beta a, b = Γ(a)Γ(b) Γ(a+b) 𝑓 𝜃; 𝛼,𝛽 = Γ(𝛼+𝛽) Γ(𝛼)Γ(𝛽) 𝜃 𝛼−1 (1−𝜃) 𝛽−1 Θ ~𝐵𝑒𝑡𝑎(𝛼,𝛽) 𝑛 𝑥 = 𝑛! 𝑛−𝑥 !𝑥! =…= 1 𝑛+1 𝐵𝑒𝑡𝑎(𝑛−𝑥+1,𝑥+1) 𝑛 𝑥 𝑝 𝑥 (1−𝑝) 𝑛−𝑥
12
Bayesian inference Posterior probability
Consequence of two antecedents Prior probability Likelihood function P 𝐴|𝐵 = P B A 𝑃(𝐴) 𝑃(𝐵) posterior likelihood x prior 𝑝 𝜃|𝑥 ∝ p x 𝜃 ×𝑝(𝜃)
13
Bayesian inference: Intuition
What we want to know What we should know Background knowledge 𝑝 𝜃|𝑥 posterior 𝑝 𝜃|𝑥 = 𝑝 𝑥 𝜃 𝑝(𝜃) likelihood x prior 𝑝 𝜃|𝑥 = 𝑝 𝑥 𝜃 𝑝(𝜃) Maximum Likelihood Assumption
14
Conjugate prior for a binomial likelihood
Posterior distributions are in the same family as the prior probability distribution Beta distribution Conjugate prior for the binomial dist. for binomial likelihood 𝑝 𝜃|𝑥 ∝ p x 𝜃 𝑝(𝜃) likelihood (Binomial Dist.) prior (Beta Dist.) Γ(𝛼+𝛽) Γ(𝛼)Γ(𝛽) 𝜃 𝛼−1 (1−𝜃) 𝛽−1 𝑛 𝑥 𝜃 𝑥 (1−𝜃) 𝑛−𝑥 Γ(𝛼+𝛽+n) Γ(𝛼+𝑥)Γ(𝛽+𝑛−𝑥) 𝜃 𝛼+𝑥−1 (1−𝜃) 𝛽+𝑛−𝑥−1 Posterior (Beta Dist.)
15
Binomial Distribution vs. Multinomial Distribution
Multinomial dist. is a generalization of the binomial dist. 𝑓 𝑥;𝑛, 𝑝 = 𝑛 𝑥 𝑝 𝑥 (1−𝑝) 𝑛−𝑥 Binomial distribution 𝑝 5 (1−𝑝) 10−5 T F T T F F F T F T 𝑓 𝑥 1 , …,𝑥 𝑘 ;𝑛, 𝑝 1 , …,𝑝 𝑘 = 𝑛! 𝑥 1 ! …𝑥 𝑘 ! 𝑝 1 𝑥 1 … 𝑝 𝑘 𝑥 𝑘 Multinomial distribution 10! 5!4!2!1! 𝑝 𝑝 𝑝 𝑝 4 1 ⇧ ⇩ ⇧ ⇧ ⇩ ⇦ ⇧ ⇩ ⇨ ⇧ ⇦ ⇩
16
Beta Distribution vs. Dirichlet Distribution
Dirichlet dist. is a multivariate generalization of the Beta dist. Very often used as prior distributions in Bayesian Statistics Conjugate prior of the Multinomial dist. 𝑿~𝑩𝒊𝒏 𝒏,𝜽 Θ ~𝑩𝒆𝒕𝒂(𝜶,𝜷) 𝑿 𝟏 ,…, 𝑿 𝒌 ~𝑴𝒖𝒍𝒕𝒊 𝒏, 𝜽 𝟏 ,…, 𝜽 𝒌 Θ 𝟏 ,…, Θ 𝒌 ~𝑫𝒊𝒓 𝜶 𝟏 ,…, 𝜶 𝒌
17
Beta Distribution vs. Dirichlet Distribution Cont.
𝑓 𝜃; 𝛼,𝛽 = Γ(𝛼+𝛽) Γ(𝛼)Γ(𝛽) 𝜃 𝛼−1 (1−𝜃) 𝛽−1 Beta distribution 𝑓 𝜃 1 , …,𝜃 𝑘 ; 𝛼 1 , …,𝛼 𝑘 = Γ( 𝛼 1 +…+ 𝛼 𝑘 ) Γ( 𝛼 1 )...Γ( 𝛼 𝑘 ) 𝜃 1 𝛼 1 … 𝜃 𝑘 𝛼 𝑘 Dirichlet distribution Beta Dirichlet
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.