Download presentation
Presentation is loading. Please wait.
Published byLydia Harmon Modified over 8 years ago
1
Simplify. a. 3 –2 Simplify. 1919 = ALGEBRA 1 LESSON 8-1 (–22.4) 0 b. Use the definition of zero as an exponent. = 1 Zero and Negative Exponents 8-1 = Use the definition of negative exponent. 132 132
2
Let’s try: Turn to page 395. Let’s try: A. Answer: 1 81 B. Answer: 1 C. Answer: 1 -64 D. Answer: 1 7 E. Answer: - 1 9
3
Simplify a.b. Simplify. 3ab 23ab 2 = = 1 1x 31x 3 Use the definition of negative exponent. = x 3 Identity Property of Multiplication ALGEBRA 1 LESSON 8-1 = 1 x 3 Multiply by the reciprocal of, which is x 3. 1 x 3 Rewrite using a division symbol. = 1 x –3 Zero and Negative Exponents 3ab –2 1 b 2 Use the definition of negative exponent. = 3a 8-1 1 x –3
4
Evaluate 4x 2 y –3 for x = 3 and y = –2. Method 1: Write with positive exponents first. Substitute 3 for x and –2 for y. 4(3) 2 (–2) 3 = 36 –8 –4 1212 = = Simplify. ALGEBRA 1 LESSON 8-1 Zero and Negative Exponents 8-1 4x 2 y –3 = Use the definition of negative exponent. 4x 2y 34x 2y 3
5
(continued) Method 2: Substitute first. 4x 2 y –3 = 4(3) 2 (–2) –3 Substitute 3 for x and –2 for y. 4(3) 2 (–2) 3 = Use the definition of negative exponent. 36 –8 –4 1212 = = Simplify. ALGEBRA 1 LESSON 8-1 Zero and Negative Exponents 8-1
6
22. 23. 24. 25. 26. 27.4c 3 28. 29. 30. 31. 32. ALGEBRA 1 LESSON 8-1 Zero and Negative Exponents pages 397–399 Exercises 1.–1 2. 3. 4.– 5. 6.– 7. 8.– 9.1 10. 1 16 1 25 1 25 1 16 1 81 1 64 1 12 1 78 11.– 12.– 13.–2 14.3; 4 15.0; –3 16.–5 17.3a 18. 19.x 7 20.c 21. 1 64 1 64 5 x 4 1 a 4 1 25p 3 x 2 y 7a 3b 2 w 1 x 5 y 7 7st 3 5 6 ac 3 x 2 8z 7 y 7 x 5 y 7 t 11 14 m 2 t 5 33. 34. 35.– 36.1 37. 38. 39. 40. 41.– 42. 43.–27 1 25 1919 1919 3 25 1 100 25 81 25 27 1 25 8-1
7
ALGEBRA 1 LESSON 8-1 Zero and Negative Exponents 44.– 45.a.$20.48; $.32 b.No; the value of the allowance rapidly becomes very great. 46.neg. 47.pos. 48.pos. 49.neg. 50.neg. 51.10 –1 52.10 –2 53.10 –3 27 400 54.10 –4 55.10 –5 56.0.001 57.0.000001 58.0.7 59.0.03 60.0.0005 61.a.5 –2, 5 –1, 5 0, 5 1, 5 2 b.5 4 c. 62.In –3 0, 3 is raised to the zero power, and then the opposite is determined. In (–3) 0, the number –3 is raised to the zero power. a n 1 63.45 64.6 65.40 66. 67.– 68.16 69. 70. 71. 72.–1 1 243 1414 2929 1818 1 16 8-1
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.