Presentation is loading. Please wait.

Presentation is loading. Please wait.

Universal Linked Multiple Access Source Codes Sidharth Jaggi Prof. Michelle Effros.

Similar presentations


Presentation on theme: "Universal Linked Multiple Access Source Codes Sidharth Jaggi Prof. Michelle Effros."— Presentation transcript:

1 Universal Linked Multiple Access Source Codes Sidharth Jaggi Prof. Michelle Effros

2 zIntroduction Source Codes (SCs) Models for Source Coding 101010011111010101101000101010101100101010101 010101010110101001111101010101101110001110100 010110101010101010011001010111101011010101001 0

3 zIntroduction Source Codes (SCs) Universal SCs, memoryless distributions on, Models for Source Coding 0101101111010110100 1111011001101100001 1010100101110100010 1111010101101001101 0101100111101011010 0010110100101011101 R

4 zIntroduction Source Codes (SCs) Multiple Access SCs (Slepian-Wolf) Models for Source Coding zmemoryless distributions on Y X Z Xavier Yvonne Zorba R X (Q) R Y (Q)

5 Source Codes (SCs) Multiple Access SCs Models for Source Coding Y X Z R X (Q) R Y (Q)

6 Source Codes (SCs) Universal SCsMultiple Access SCs Models for Source Coding R Y X Z R X (Q) R Y (Q)

7 Slepian-Wolf Rate Region R X (Q) R Y (Q)

8 Source Codes (SCs) Multiple Access SCs Universal MASCs? Models for Source Coding memoryless distributions on

9 Source Codes (SCs) Universal SCsMultiple Access SCs Universal MASCs? Models for Source Coding memoryless distributions on

10 Universal MASCs? Let

11 Universal MASCs?

12 Source Codes (SCs) Universal SCsMultiple Access SCs Missing Link Linked MASCs Models for Source Coding

13 Linked MASC (LMASC) Model Y X Z Xavier Yvonne Zorba

14 (0,0)-LMASCs Y X Z Xavier Yvonne Zorba

15 RXRX RYRY (0,0)-LMASC Rate Region z(0,0)-LMASC Rate Region = Slepian-Wolf Rate Region

16 Source Codes (SCs) Universal SCsMultiple Access SCs Linked MASCs Universal LMASCs?

17 Universal (0,0)-LMASCs Code Y X Z Xavier Yvonne Zorba

18 Universal (0,0)-LMASCs Code Y X Z Xavier Yvonne Zorba

19 Results for (0,0)-LMASCs If Example: then zTradeoffs

20 Y X Z Xavier Yvonne Zorba z LMASCs

21 Y X Z zAchievable Region zUniversal Coding Possible z LMASCs

22 Y X Z zAchievable Region zUniversal Coding possible z LMASCs

23 Y X Z Yvonne Zorba Xavier Algernon A z -encoder LMASCs= -encoder MASC z - encoder LMASCs zUniversal Coding possible

24 Y X Z Xavier Yvonne Zorba z(0,0)-FMASCs =(0,0)-LMASCs z(,)-FMASCs =(0,0)-LMASCs zUniversal Coding possible zFeedback MASCs

25 Proof Sketch - Universal LMASCs Y X Z Xavier Yvonne Zorba

26 Let be the type of Tell Zorba value of in bits. Y X Z Xavier Yvonne Zorba Proof Sketch - Universal LMASCs

27 Y X Z Xavier Yvonne Zorba Proof Sketch - Universal LMASCs Let be the type of

28 Proof Sketch - Universal LMASCs

29 What could possibly go wrong? Estimate “far off” Probability of ErrorRate Redundancy

30 What could possibly go wrong? Probability of ErrorRedundancy Atypicality Code fails Source mismatch

31 zProbability of ErrorzRedundancy What could possibly go wrong?

32 Conclusions X Z zMASC z(0,0)-LMASC Universality Y X Z Y z - LMASC Universality X Z Y

33 Conclusions X Z z(0,0)-FMASC Y zl -encoder - LMASC Universality X Z Y z - FMASC Complicated diagrams

34 The bottom line is… It WORKS!

35 Universal SCs Let, class of memoryless distributions on zPre-designed codes (“Guess”): Code C such that Eg: Csiszár and Körner, zAdaptive Codes (“Estimate”): Code C such that Eg: Lempel-Ziv

36 Multiple Sources Individual Encoding z Xavier and Yvonne encode using individually optimal strategies Y X Z Xavier Yvonne R2R2 Individual Encoding Rate region R2R2 H(X) H(Y)

37 Multiple Sources Joint Encoding z Xavier and Yvonne encode together Y X Z Xavier Yvonne R2R2 H(X,Y) Joint Encoding Rate region R2R2 H(X,Y)

38 Universal (0,0)-LMASCs “Guess-timate”… Let be the type of Tell Zorba value of in bits. Y X Z Xavier Yvonne Zorba

39 Universal (0,0)-LMASCs Choosing the following rates works Parameters of code Choose a pre-designed Slepian-Wolf code matched to pmf

40 Sketch of Proof By Sanov’s Theorem, probability of being “far-off” from is “small”

41 Sketch of Proof Assume Then

42 Sketch of Proof If Probability of Error

43 Sketch of Proof … or if Probability of Error

44 Sketch of Proof … or if code fails for Probability of Error

45 Sketch of Proof … or if code fails for Probability of Error

46 Sketch of Proof Expected Rate Overhead Rate Overhead in Code Design for pmf …

47 Sketch of Proof Expected Rate Overhead … and Source Mismatch. If …

48 Sketch of Proof Expected Rate Overhead … and Source Mismatch. If …

49 Sketch of Proof Expected Rate Overhead … and Source Mismatch. … and if …

50 Results Inter-Encoder Communication Probability of Error Expected Rate Overhead

51 Other System Models z LMASC Rate Region “Transfer of rate” LMASC Rate Region R X (Q) R Y (Q)

52 Main Result For any m(n)  satisfying (1), and i.I.D. Sources X and Y, there exists a sequence of encoders and decoder (f n,g n,h n ) such that. zE((r(X n, Y n )) differs from the boundary of the Slepian- wolf region by at most –3|x||y|  (n)log  (n)+n -1 m(n). (For any  (n) > m -½ (n)). zE(Prob(error)) = 2 -o(m(n) ). Further, the rate region for UMASC under the above constraints is identical to that of Slepian-wolf encoding for the same source.  2 (n)

53 Sketch of Proof Estimate of p(x,y) = p’(x,y) = m -1 (n)  i,j 1(x i =x,y j =y) Define max (x,y) |p(x,y)-p’(x,y)| =  0 By Sanov’s theorem, Pr(  0 >  ) = 2 -o(m(n)D(P ||P)) where D(P * ||P) = min P’  S D(P’||P), S={p’(x,y):max (x,y) |p(x,y)-p’(x,y)| >  } * S P P* D(P * ||P) 

54 Lemma 1 D(P*||P) = d(p(x,y)+  || p(x,y)) for some particular (x,y) (Lagrange optimization) =  (  2 ) for sufficiently small   D(P * ||P) c 2  2

55 Lemma 2 1. Max (x,y) |p(x,y)-p’(x,y)| <  (n)  |H P (X,Y)-H P’ (X,Y)|< -|x||y|  (n)log(  (n)) 2. |H p (x,y)-h p’ (x,y)|>   Max (x,y) |p(x,y)-p’(x,y)| >  (|X||Y|) -1 {p(x,y)} H P (X,Y)  

56 Choice of R(X n,Y m(n) ), R(X m(n),Y n ) 1.Estimate p’(x,y) 2.Choose m(n) and  (n) satisfying Theorem statement 3.Find p’’(x,y) such that 1.max (x,y) |p’(x,y)-p’’(x,y)| =  (n) 2.p’’(x,y) = argmax H P’’ (X,Y) subject to above 4.Encode using a Slepian-Wolf-like codebook for p’’(x,y) {p(x,y)} H P’’ (X,Y)    Probability Entropy 0 0 H P’ (X,Y)H P (X,Y) {p’’(x,y)}{p’(x,y)} A (n) A’ (n)  

57 Excess Rate over Slepian-Wolf Encoding 1(a) With high probability, max (x,y) |p’(x,y)-p’’(x,y)| < 2  (n) Contribution to excess rate at most –2|X||Y|  (n)log(  (n)) 1(b) If 1(a) not satisfied, contribution to expected excess rate at most 2 -o(m(n) ) log((|X||Y|). Absorb into 1(a) 2. Rate communicated to Zorba to inform him of choice of codebook = n -1 m(n)  2 (n)

58 Probability of Error 1. Probability of catastrophically incorrect p’(x,y) at most exp(-O(m(n)  2 (n))) 2. Probability of atypical (x n,y n ) at most exp(-O(n  2 (n))) 3. Probability of distinct typical elements decoding to the same codewords at most exp(-O(-n  (n)log  (n))) 1. Dominates over 2. and 3.

59 THE END


Download ppt "Universal Linked Multiple Access Source Codes Sidharth Jaggi Prof. Michelle Effros."

Similar presentations


Ads by Google