Download presentation
1
Proteomics & Mass Spectrometry
Nathan Edwards Center for Bioinformatics and Computational Biology
2
Outline Proteomics Mass Spectrometry Protein Identification
Peptide Mass Fingerprint Tandem Mass Spectrometry
3
Proteomics Proteins are the machines that drive much of biology
Genes are merely the recipe The direct characterization of a sample’s proteins en masse. What proteins are present? How much of each protein is present?
4
Gene / Transcript / Protein
Systems Biology Establish relationships by Choosing related samples, Global characterization, and Comparison. Gene / Transcript / Protein Measurement Predetermined Unknown Discrete (DNA) Genotyping Sequencing Continuous Gene Expression Proteomics
5
Samples Healthy / Diseased Cancerous / Benign
Drug resistant / Drug susceptible Bound / Unbound Tissue specific Cellular location specific Mitochondria, Membrane
6
2D Gel-Electrophoresis
Protein separation Molecular weight (MW) Isoelectric point (pI) Staining Birds-eye view of protein abundance
7
2D Gel-Electrophoresis
Bécamel et al., Biol. Proced. Online 2002;4:
8
Paradigm Shift Traditional protein chemistry assay methods struggle to establish identity. Identity requires: Specificity of measurement (Precision) Mass spectrometry A reference for comparison (Measurement → Identity) Protein sequence databases
9
Mass Spectrometer Ionizer Sample Mass Analyzer Detector MALDI
+ _ Mass Analyzer Detector MALDI Electro-Spray Ionization (ESI) Time-Of-Flight (TOF) Quadrapole Ion-Trap Electron Multiplier (EM)
10
Mass Spectrometer (MALDI-TOF)
UV (337 nm) Microchannel plate detector Field-free drift zone Source Pulse voltage Analyte/matrix Ed = 0 Length = D Length = s Backing plate (grounded) Extraction grid (source voltage -Vs) Detector grid -Vs
11
Mass Spectrum
12
Mass is fundamental
13
Peptide Mass Fingerprint
Cut out 2D-Gel Spot
14
Peptide Mass Fingerprint
Trypsin Digest
15
Peptide Mass Fingerprint
MS
16
Peptide Mass Fingerprint
17
Peptide Mass Fingerprint
Trypsin: digestion enzyme Highly specific Cuts after K & R except if followed by P Protein sequence from sequence database In silico digest Mass computation For each protein sequence in turn: Compare computer generated masses with observed spectrum
18
Protein Sequence Myoglobin - Plains zebra GLSDGEWQQV LNVWGKVEAD IAGHGQEVLI RLFTGHPETL EKFDKFKHLK TEAEMKASED LKKHGTVVLT ALGGILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISDA IIHVLHSKHP GDFGADAQGA MTKALELFRN DIAAKYKELG FQG
19
Protein Sequence Myoglobin - Plains zebra GLSDGEWQQV LNVWGKVEAD IAGHGQEVLI RLFTGHPETL EKFDKFKHLK TEAEMKASED LKKHGTVVLT ALGGILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISDA IIHVLHSKHP GDFGADAQGA MTKALELFRN DIAAKYKELG FQG
20
Peptide Masses 1811.90 GLSDGEWQQVLNVWGK 1606.85 VEADIAGHGQEVLIR
LFTGHPETLEK HGTVVLTALGGILK KGHHEAELKPLAQSHATK GHHEAELKPLAQSHATK YLEFISDAIIHVLHSK HPGDFGADAQGAMTK ALELFR
21
Peptide Mass Fingerprint
YLEFISDAIIHVLHSK GLSDGEWQQVLNVWGK GHHEAELKPLAQSHATK HGTVVLTALGGILK HPGDFGADAQGAMTK VEADIAGHGQEVLIR KGHHEAELKPLAQSHATK ALELFR LFTGHPETLEK
22
Mass Spectrometry Strengths Weaknesses Precise molecular weight
Fragmentation Automated Weaknesses Best for a few molecules at a time Best for small molecules Mass-to-charge ratio, not mass Intensity ≠ Abundance
23
Sample Preparation for MS/MS
Enzymatic Digest and Fractionation
24
Single Stage MS MS
25
Tandem Mass Spectrometry (MS/MS)
Precursor selection
26
Tandem Mass Spectrometry (MS/MS)
Precursor selection + collision induced dissociation (CID) MS/MS
27
Peptide Fragmentation
Peptides consist of amino-acids arranged in a linear backbone. N-terminus H…-HN-CH-CO-NH-CH-CO-NH-CH-CO-…OH Ri-1 Ri Ri+1 C-terminus AA residuei-1 AA residuei AA residuei+1
28
Peptide Fragmentation
29
Peptide Fragmentation
bi yn-i yn-i-1 -HN-CH-CO-NH-CH-CO-NH- Ri CH-R’ i+1 R” i+1 bi+1
30
Peptide Fragmentation
Peptide: S-G-F-L-E-E-D-E-L-K MW ion 88 b1 S GFLEEDELK y9 1080 145 b2 SG FLEEDELK y8 1022 292 b3 SGF LEEDELK y7 875 405 b4 SGFL EEDELK y6 762 534 b5 SGFLE EDELK y5 633 663 b6 SGFLEE DELK y4 504 778 b7 SGFLEED ELK y3 389 907 b8 SGFLEEDE LK y2 260 1020 b9 SGFLEEDEL K y1 147
31
Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions 100 % Intensity m/z 250 500 750 1000
32
Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions y6 100 y7 % Intensity y5 b3 b4 y2 y3 y4 b5 y8 b6 b8 b7 b9 y9 m/z 250 500 750 1000
33
Peptide Identification
Given: The mass of the precursor ion, and The MS/MS spectrum Output: The amino-acid sequence of the peptide
34
Peptide Identification
Two paradigms: De novo interpretation Sequence database search
35
De Novo Interpretation
100 250 500 750 1000 m/z % Intensity
36
De Novo Interpretation
100 250 500 750 1000 m/z % Intensity E L
37
De Novo Interpretation
100 250 500 750 1000 m/z % Intensity E L F KL SGF G D
38
De Novo Interpretation
Amino-Acid Residual MW A Alanine M Methionine C Cysteine N Asparagine D Aspartic acid P Proline E Glutamic acid Q Glutamine F Phenylalanine R Arginine G Glycine S Serine H Histidine T Threonine I Isoleucine V Valine K Lysine W Tryptophan L Leucine Y Tyrosine
39
De Novo Interpretation
…from Lu and Chen (2003), JCB 10:1
40
De Novo Interpretation
41
De Novo Interpretation
…from Lu and Chen (2003), JCB 10:1
42
De Novo Interpretation
Find good paths in spectrum graph Can’t use same peak twice Simple peptide fragmentation model Usually many apparently good solutions Amino-acids have duplicate masses! “Best” de novo interpretation may have no biological relevance Identifies relatively few peptides in high-throughput workflows
43
Sequence Database Search
Compares peptides from a protein sequence database with spectra Filter peptide candidates by Precursor mass Digest motif Score each peptide against spectrum Generate all possible peptide fragments Match putative fragments with peaks Score and rank
44
Peptide Fragmentation
S G F L E E D E L K 100 % Intensity m/z 250 500 750 1000
45
Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions 100 % Intensity m/z 250 500 750 1000
46
Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions y6 100 y7 % Intensity y5 b3 b4 y2 y3 y4 b5 y8 b6 b8 b7 b9 y9 m/z 250 500 750 1000
47
Sequence Database Search
Sequence fills in gaps in the spectrum All candidates have biological relevance Practical for high-throughput peptide identification Correct peptide might be missing from database!
48
Peptide Candidate Filtering
Digestion Enzyme: Trypsin Cuts just after K or R unless followed by a P. Must allow for “missed” cleavage sites “Average” peptide length about amino-acids
49
Peptide Candidate Filtering
>ALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK… No missed cleavage sites MK WVTFISLLFLFSSAYSR GVFR R DAHK SEVAHR FK DLGEENFK ALVLIAFAQYLQQCPFEDHVK LVNEVTEFAK …
50
Peptide Candidate Filtering
>ALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK… One missed cleavage site MKWVTFISLLFLFSSAYSR WVTFISLLFLFSSAYSRGVFR GVFRR RDAHK DAHKSEVAHR SEVAHRFK FKDLGEENFK DLGEENFKALVLIAFAQYLQQCPFEDHVK ALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK …
51
Peptide Scoring Peptide fragments vary based on
The instrument The peptide’s amino-acid sequence The peptide’s charge state Etc… Search engines model peptide fragmentation to various degrees. Speed vs. sensitivity tradeoff y-ions & b-ions occur most frequently
52
Mascot Search Engine
53
Mascot MS/MS Ions Search
54
Mascot MS/MS Search Results
55
Mascot MS/MS Search Results
56
Mascot MS/MS Search Results
57
Mascot MS/MS Search Results
58
Mascot MS/MS Search Results
59
Mascot MS/MS Search Results
60
Mascot MS/MS Search Results
61
Mascot MS/MS Search Results
62
Mascot MS/MS Search Results
63
Mascot MS/MS Search Results
64
Summary Protein identification by mass spectrometry is a key element of proteomics and systems biology. Mass spectrometry + sequence databases represent a huge leap for protein (bio-)chemistry. Sample prep, instruments and algorithms still maturing, much work to be done.
65
Further Reading Matrix Science (Mascot) Web Site
Seattle Proteome Center (ISB) Proteomic Mass Spectrometry Lab at The Scripps Research Institute fields.scripps.edu UCSF ProteinProspector prospector.ucsf.edu
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.