Presentation is loading. Please wait.

Presentation is loading. Please wait.

Proteomics & Mass Spectrometry

Similar presentations


Presentation on theme: "Proteomics & Mass Spectrometry"— Presentation transcript:

1 Proteomics & Mass Spectrometry
Nathan Edwards Center for Bioinformatics and Computational Biology

2 Outline Proteomics Mass Spectrometry Protein Identification
Peptide Mass Fingerprint Tandem Mass Spectrometry

3 Proteomics Proteins are the machines that drive much of biology
Genes are merely the recipe The direct characterization of a sample’s proteins en masse. What proteins are present? How much of each protein is present?

4 Gene / Transcript / Protein
Systems Biology Establish relationships by Choosing related samples, Global characterization, and Comparison. Gene / Transcript / Protein Measurement Predetermined Unknown Discrete (DNA) Genotyping Sequencing Continuous Gene Expression Proteomics

5 Samples Healthy / Diseased Cancerous / Benign
Drug resistant / Drug susceptible Bound / Unbound Tissue specific Cellular location specific Mitochondria, Membrane

6 2D Gel-Electrophoresis
Protein separation Molecular weight (MW) Isoelectric point (pI) Staining Birds-eye view of protein abundance

7 2D Gel-Electrophoresis
Bécamel et al., Biol. Proced. Online 2002;4:

8 Paradigm Shift Traditional protein chemistry assay methods struggle to establish identity. Identity requires: Specificity of measurement (Precision) Mass spectrometry A reference for comparison (Measurement → Identity) Protein sequence databases

9 Mass Spectrometer Ionizer Sample Mass Analyzer Detector MALDI
+ _ Mass Analyzer Detector MALDI Electro-Spray Ionization (ESI) Time-Of-Flight (TOF) Quadrapole Ion-Trap Electron Multiplier (EM)

10 Mass Spectrometer (MALDI-TOF)
UV (337 nm) Microchannel plate detector Field-free drift zone Source Pulse voltage Analyte/matrix Ed = 0 Length = D Length = s Backing plate (grounded) Extraction grid (source voltage -Vs) Detector grid -Vs

11 Mass Spectrum

12 Mass is fundamental

13 Peptide Mass Fingerprint
Cut out 2D-Gel Spot

14 Peptide Mass Fingerprint
Trypsin Digest

15 Peptide Mass Fingerprint
MS

16 Peptide Mass Fingerprint

17 Peptide Mass Fingerprint
Trypsin: digestion enzyme Highly specific Cuts after K & R except if followed by P Protein sequence from sequence database In silico digest Mass computation For each protein sequence in turn: Compare computer generated masses with observed spectrum

18 Protein Sequence Myoglobin - Plains zebra GLSDGEWQQV LNVWGKVEAD IAGHGQEVLI RLFTGHPETL EKFDKFKHLK TEAEMKASED LKKHGTVVLT ALGGILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISDA IIHVLHSKHP GDFGADAQGA MTKALELFRN DIAAKYKELG FQG

19 Protein Sequence Myoglobin - Plains zebra GLSDGEWQQV LNVWGKVEAD IAGHGQEVLI RLFTGHPETL EKFDKFKHLK TEAEMKASED LKKHGTVVLT ALGGILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISDA IIHVLHSKHP GDFGADAQGA MTKALELFRN DIAAKYKELG FQG

20 Peptide Masses 1811.90 GLSDGEWQQVLNVWGK 1606.85 VEADIAGHGQEVLIR
LFTGHPETLEK HGTVVLTALGGILK KGHHEAELKPLAQSHATK GHHEAELKPLAQSHATK YLEFISDAIIHVLHSK HPGDFGADAQGAMTK ALELFR

21 Peptide Mass Fingerprint
YLEFISDAIIHVLHSK GLSDGEWQQVLNVWGK GHHEAELKPLAQSHATK HGTVVLTALGGILK HPGDFGADAQGAMTK VEADIAGHGQEVLIR KGHHEAELKPLAQSHATK ALELFR LFTGHPETLEK

22 Mass Spectrometry Strengths Weaknesses Precise molecular weight
Fragmentation Automated Weaknesses Best for a few molecules at a time Best for small molecules Mass-to-charge ratio, not mass Intensity ≠ Abundance

23 Sample Preparation for MS/MS
Enzymatic Digest and Fractionation

24 Single Stage MS MS

25 Tandem Mass Spectrometry (MS/MS)
Precursor selection

26 Tandem Mass Spectrometry (MS/MS)
Precursor selection + collision induced dissociation (CID) MS/MS

27 Peptide Fragmentation
Peptides consist of amino-acids arranged in a linear backbone. N-terminus H…-HN-CH-CO-NH-CH-CO-NH-CH-CO-…OH Ri-1 Ri Ri+1 C-terminus AA residuei-1 AA residuei AA residuei+1

28 Peptide Fragmentation

29 Peptide Fragmentation
bi yn-i yn-i-1 -HN-CH-CO-NH-CH-CO-NH- Ri CH-R’ i+1 R” i+1 bi+1

30 Peptide Fragmentation
Peptide: S-G-F-L-E-E-D-E-L-K MW ion 88 b1 S GFLEEDELK y9 1080 145 b2 SG FLEEDELK y8 1022 292 b3 SGF LEEDELK y7 875 405 b4 SGFL EEDELK y6 762 534 b5 SGFLE EDELK y5 633 663 b6 SGFLEE DELK y4 504 778 b7 SGFLEED ELK y3 389 907 b8 SGFLEEDE LK y2 260 1020 b9 SGFLEEDEL K y1 147

31 Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions 100 % Intensity m/z 250 500 750 1000

32 Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions y6 100 y7 % Intensity y5 b3 b4 y2 y3 y4 b5 y8 b6 b8 b7 b9 y9 m/z 250 500 750 1000

33 Peptide Identification
Given: The mass of the precursor ion, and The MS/MS spectrum Output: The amino-acid sequence of the peptide

34 Peptide Identification
Two paradigms: De novo interpretation Sequence database search

35 De Novo Interpretation
100 250 500 750 1000 m/z % Intensity

36 De Novo Interpretation
100 250 500 750 1000 m/z % Intensity E L

37 De Novo Interpretation
100 250 500 750 1000 m/z % Intensity E L F KL SGF G D

38 De Novo Interpretation
Amino-Acid Residual MW A Alanine M Methionine C Cysteine N Asparagine D Aspartic acid P Proline E Glutamic acid Q Glutamine F Phenylalanine R Arginine G Glycine S Serine H Histidine T Threonine I Isoleucine V Valine K Lysine W Tryptophan L Leucine Y Tyrosine

39 De Novo Interpretation
…from Lu and Chen (2003), JCB 10:1

40 De Novo Interpretation

41 De Novo Interpretation
…from Lu and Chen (2003), JCB 10:1

42 De Novo Interpretation
Find good paths in spectrum graph Can’t use same peak twice Simple peptide fragmentation model Usually many apparently good solutions Amino-acids have duplicate masses! “Best” de novo interpretation may have no biological relevance Identifies relatively few peptides in high-throughput workflows

43 Sequence Database Search
Compares peptides from a protein sequence database with spectra Filter peptide candidates by Precursor mass Digest motif Score each peptide against spectrum Generate all possible peptide fragments Match putative fragments with peaks Score and rank

44 Peptide Fragmentation
S G F L E E D E L K 100 % Intensity m/z 250 500 750 1000

45 Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions 100 % Intensity m/z 250 500 750 1000

46 Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions y6 100 y7 % Intensity y5 b3 b4 y2 y3 y4 b5 y8 b6 b8 b7 b9 y9 m/z 250 500 750 1000

47 Sequence Database Search
Sequence fills in gaps in the spectrum All candidates have biological relevance Practical for high-throughput peptide identification Correct peptide might be missing from database!

48 Peptide Candidate Filtering
Digestion Enzyme: Trypsin Cuts just after K or R unless followed by a P. Must allow for “missed” cleavage sites “Average” peptide length about amino-acids

49 Peptide Candidate Filtering
>ALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK… No missed cleavage sites MK WVTFISLLFLFSSAYSR GVFR R DAHK SEVAHR FK DLGEENFK ALVLIAFAQYLQQCPFEDHVK LVNEVTEFAK

50 Peptide Candidate Filtering
>ALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK… One missed cleavage site MKWVTFISLLFLFSSAYSR WVTFISLLFLFSSAYSRGVFR GVFRR RDAHK DAHKSEVAHR SEVAHRFK FKDLGEENFK DLGEENFKALVLIAFAQYLQQCPFEDHVK ALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK

51 Peptide Scoring Peptide fragments vary based on
The instrument The peptide’s amino-acid sequence The peptide’s charge state Etc… Search engines model peptide fragmentation to various degrees. Speed vs. sensitivity tradeoff y-ions & b-ions occur most frequently

52 Mascot Search Engine

53 Mascot MS/MS Ions Search

54 Mascot MS/MS Search Results

55 Mascot MS/MS Search Results

56 Mascot MS/MS Search Results

57 Mascot MS/MS Search Results

58 Mascot MS/MS Search Results

59 Mascot MS/MS Search Results

60 Mascot MS/MS Search Results

61 Mascot MS/MS Search Results

62 Mascot MS/MS Search Results

63 Mascot MS/MS Search Results

64 Summary Protein identification by mass spectrometry is a key element of proteomics and systems biology. Mass spectrometry + sequence databases represent a huge leap for protein (bio-)chemistry. Sample prep, instruments and algorithms still maturing, much work to be done.

65 Further Reading Matrix Science (Mascot) Web Site
Seattle Proteome Center (ISB) Proteomic Mass Spectrometry Lab at The Scripps Research Institute fields.scripps.edu UCSF ProteinProspector prospector.ucsf.edu


Download ppt "Proteomics & Mass Spectrometry"

Similar presentations


Ads by Google