Download presentation
Presentation is loading. Please wait.
Published byBrandon Price Modified over 9 years ago
1
Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh
2
Plan Tamm plasmons Coupling Tamm plasmons and exciton-polaritons Controlling exciton-polaritons
3
metal vacuum n imaginary imaginary Surface plasmons Cannot be excited directly and only with E in plane of incidence (TM)
4
Surface plasmon dispersion
5
metal Bragg reflector n imaginary imaginary Tamm plasmons even with Can be excited at normal and oblique incidence (TE and TM)
6
if high index layer comes first
7
Field profile for Tamm plasmons
8
Field intensity profile for cavity photons
9
Resonant coupling of Tamm plasmons and exciton-polaritons
11
Hybrid modes Three oscillator model Lowest hybrid mode is lower in energy than exciton-polariton by
12
Real part of energy of the hybrid modes versus width of the semiconductor layer adjacent to the gold Real part of energy of the hybrid modes versus thickness of the gold layer. Vertical bars give the imaginary parts of energy
13
In-plane dispersion curves of hybrid modes for 50 nm film of gold: solid TE, dashed TM
14
Using surface metallization for lateral spatial control of exciton-polaritons Illuminate at a photon energy just above the lowest mode - excitations only created where there is metal
15
Pump detuning Using the Stark effect and polariton bistability Reduce detuning in one segment by Stark effect – local state goes from lower red to green Diffusion into adjacent segment – local state goes from green to upper red
16
Conclusions Technologically straightforward process of surface metallization makes it possible to have Tamm plasmons in planar microcavity structures Strong coupling of Tamm plasmons and exciton- polaritons is possible Effect can be used to provide spatial control of exciton-polaritons
17
Acknowledgements Valuable discussions with T. Ostatnický EU FP7 funding through the POLALAS (230811) and Clermont4 (235114) projects NCCR Quantum Photonics, Swiss National Science Foundation Center of Excellence in Polaritonics, funded by RANNIS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.