Download presentation
Presentation is loading. Please wait.
Published byJocelin Hudson Modified over 8 years ago
1
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 1 Precision Studies on Strong Interaction in Pionic Hydrogen J. Marton Stefan Meyer Institut (SMI) / ÖAW on behalf of the Pionic Hydrogen Collaboration @ PSI Coimbra – Debrecen – Ioannina – Jülich – Paris – PSI – SMI/Vienna
2
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 2 Outline Motivation Pionic hydrogen: Cascade Scattering lengths Layout of the experiment Measurements Preliminary results: Shift, width Summary and outlook
3
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 3 Physics Goals N coupling constant (using Goldberger Miyazawa Oehme sum rule) pion-nucleon sigma term (measure of chiral symmetry breaking) High precision values for the hadronic shift ε 1s and width 1s of the 1s ground state of pionic hydrogen p pion-nucleon scattering lengths (isoscalar, isovector) with an accuracy at the percent level scattering lengths basis for comparison of changes in the nuclear medium
4
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 4 Electromagnetic Cascade of p precise QED calculations ~ 10 -3 advanced cascade theory p is not an isolated system interaction with hydrogen atoms QED n n -1 I = 0 12 1 2 3 4 ~16 π 0 n + γn Stark mixing E Kα ~ 2.5 keV QED + Strong interaction X-ray transitions external Auger transitions Coulomb transition
5
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 5 Strong Interaction in p Principal interaction: electromagnetic Transition energies 4p-1s, 3p-1s, 2p-1s (QED) TransitionEnergy [eV] QEDEnergy [eV] QED + strong interaction 2p – 1s2429.5062436.614 3p – 1s2878.8082885.916 4p – 1s3036.0943043.202
6
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 6 Extraction of a + and a - = (-7.2 2.9) 10 -2 J. Gasser et al., Eur. Phys. J. C26 (2003) 13 = (0.6 0.2) 10 -2 P. Zemp, Proc. Workshop Hadatom05 Accuracy of a + strongly dependent on ! Deser formulae:
7
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 7 Pion-Nucleon Scattering Lengths shift data from pionic hydrogen and pionic deuterium, width from pionic hydrogen (Schröder et al.,2001) Tomozawa-Weinberg – current algebra (chiral limit) a + = 0 a - = 0.079 m -1
8
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 8 Scheme of Experimental Set-Up high stop density high X - ray line yields bright X - ray source position & energy resolution background reduction by analysis of CCD hit pattern spherically bent Bragg crystal ultimate energy resolution
9
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 9 Set-Up at PSI crystal spectrometer spherically bent crystals CCD X-ray detector 2 3 matrix X-ray tube cryogenic target cyclotron trap II
10
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 10 Experimental Method Bragg crystal CCD X-ray detector Target and cyclotron trap
11
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 11 Cyclotron Trap -Target - Degraders X - rays beam stop efficiency f stop density 1% @ stp 10 9 /s super-conducting split coil magnet
12
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 12 Spherically Curved Bragg Crystal 100 mm
13
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 13 Large - Area Focal Plane CCD Detector N. Nelms et al., Nucl. Instr. Meth 484 (2002) 419 2 3 CCD 22 array pixel size 40 m 40 m 600 600 pixels per chip operation at – 100°C 150 eV @ 4 keV X 90% image area storage area flexible boards cooling (LN 2 )
14
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 14 high pion flux in E5 at PSI p =112 MeV/c, ~ 10 9 - /s cyclotron trap for small stop volume and high stopping efficiency Light weight cryogenic target for wide density range spherically bent Bragg crystals characterization by ECRIT X-ray source position sensitive X-ray detection with CCD array: CCD-22 background reduction by shielding and pixel analysis of CCD data calibration lines (pionic oxygen) measured in parallel Features of the Experiment
15
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 15 p Hadronic Shift and Width e.m. transition without strong interaction attractive shift Goals: Shift 0.2% Width 1% Molecular effects Doppler broadening Coulomb deexcitation Precision in small effects ~10 -5 E B careful study of systematic effects Stability & Calibration
16
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 16 Extention of parameter space measurements of shift and width with different Experimental Procedure densities X-ray transitions (4p-1s, 3p-1s, 2p-1s) Investigations on molecular effects Coulomb transitions effecting the width high statistic measurement
17
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 17 mixture H 2 / 16 O 2 (98%/2%) 85K at 1.2 bar 4 bar equivalent density H 2 20K at 2 bar 28.5 bar equivalent density H 2 17K at 1 bar LH 2 first time measurement Shift Measurement: Density Dependence
18
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 18 H(3p-1s) energy no density dependence identified 1s = + 7.120 0.008 0.007 eV E QED = ± 0.006 eV P. Indelicato, priv. comm. previous experiment LH 2 previous experiment ETHZ-PSIH.-Ch.Schröder et al. Eur.Phys.J.C 1(2001)473 Density Effect in ε 1s ? Molecular formation ("Vesman“ mechanism) p + H 2 [( pp) p] ee
19
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 19 Hadronic Width Low background (tails) High statistics Well-known response function Correction of Doppler effect (em cascade) Requirements for precise determination of 1s :
20
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 20 Electron Cyclotron Resonance Ion Trap cyclotron trap (4) + hexapole magnet (2) ( D. Hitz et al., Rev. Sci. Instr., 71 (2000) 1116) large mirror ratio B max / B min ! argon / oxygen (1/9) 1.4 10 -6 mbar HF 6.4 Ghz Response Function H- and He-like electronic atoms T ion 5 eV "cold" plasma narrow X-ray transitions X = 10 - 40 meV high X-ray intensity: short measuring time First plasma inside ECRIT
21
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 21 ECRIT and Crystal Spectrometer D.F.Anagnostopoulos et al., Nucl. Instr. Meth. B 205 (2003) 9 CCD detector aperture 6.4 GHz, 450 W = 10 –8 s M1 transitions in He-like S, Cl and Ar response function very well understood
22
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 22 previous experiment H.-Ch.Schröder et al. Eur.Phys.J.C 21 (2001) 473 not corrected for Coulomb de-excitation crystal resolution subtracted 15 3.5 3.5 28.5 LH 2 10 bar Line Width Analysis
23
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 23 NEUTRON - TOF ( – p ) ns 0 n non-radiative transitions quasi-discrete velocity profile n – TOF / ns A. Badertscher et al., Eur. Phys. Lett. 54 (2001) 313 ( – H ) n + H=H ( – H ) n-1 + H + H + kinetic energy Coulomb Transitions: PSI experiment
24
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 24 Coulomb Transitions Energy gain from Coulomb transitions 2p-1s 3p-1s 4p-1s Example: 3p-1s
25
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 25 Width – Doppler Corrected 907±34 meV 775±40 meV 812±60 meV 1s 823 19 meV (2.3%) Fit results including Doppler boxes with free weights Boxes: 0-2 eV 2-20 eV 29-33 eV 65-75 eV 210-220 eV Boxes: 0-2 eV 2-20 eV 29-33 eV 65-75 eV Boxes 0-2 eV 3-15 eV 27-34 eV (same apparatus, 10bar)
26
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 26 High Statistics Data Measurement (2005) of the X-ray transition 2p 1s in pionic hydrogen 1 ch = 28.9 meV in analysis
27
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 27 Coulomb de-excitation low-energy component Coulomb de-excitation high-energy components Muonic Hydrogen ----- Crystal response ECRIT 2004 µH R-98.01 December 2004
28
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 28 a + +a - = (93.2±2.9) [10 -3 m π -1 ] ε 1s : Extraction of scattering lengths dominated by ChPT correction = (-7.2 2.9)% * J. Gasser et al., Eur. Phys. J. C 26, 13 (2003) ChPT correction = (0.6 0.2)% * P. Zemp, Proceedings hadatom05, arXiv:hep-ph/0508193 (2005) p.16 a - = (86.4 ) [10 -3 m π -1 ] pion nucl. coupling constant +0.99 -1.02 a + = (6.8±3.1) [10 -3 m π -1 ] * δ ε depend on three LEC: c 1,f 1,f 2 ; f 1 badly known, depends on f 2 only 1s = 823 19 meV (2.3%) (Preliminary result 2005) a + and a - (preliminary results)
29
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 29 Pion-nucleon Coupling Constant GMO sum rule f 2 πN = 0.5712 a - [m π ] + 0.02488 J [mb -1 ] = 0.0763 M.L. Goldberger, H. Miyazawa, R. Oehme Phys. Rev. 99, 986 (1955) g πNN = 47.66 f πN = 13.165 J = - (1.082 0.032) mb T. E. O. Ericson et al. Phys. Rev. C 66, 014005 (2002) [ g 2 πNN /4π=13.79 ± ] 0.164 0.180 + 0.0009 - 0.0010 + 0.077 - 0.087 J
30
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 30 Pion-nucleon Coupling Constant preliminary PSI 2006 M. Saino
31
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 31 PSI Experiment R98-01 previous exp. present goal 1s / 1s 0.5% 0.2% 0.2% reached 1s / 1s 7 % 2 % 1% Results on Pionic Hydrogen Work in progress: H Coulomb de-excitation analysis Hhigh statistic measurement (2005) analysis D measurements in 2006 – additional information
32
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 32 Status of p Experiment Density dependence studies of the 1s no effect of molecular effects at our accuracy found value consistent with result of previous experiment Measurement of transitions from 4p, 3p and 2p to 1s influence of cascade processes on width Doppler effect ECRIT response function extracted Precision measurement of µp X-ray spectrum study of the Doppler broadening due to Coulomb transitions High statistic measurement 2005 – now in analysis
33
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 33 Outlook Thank you for your attention Measurement program is finalized. Analysis of the data set is in progress. We are approaching our goal in accuracy of 1s.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.