Download presentation
Presentation is loading. Please wait.
Published byAlison French Modified over 9 years ago
1
Cédric Lorcé IPN Orsay - LPT Orsay Introduction to the GTMDs and the Wigner distributions June 10 2013, Palace Hotel, Como, Italy
2
The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions
3
The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions
4
The charges Charges Polarization Depends on : Vector Parton number Tensor Parton transversity Axial Parton helicity
5
DIS The parton distribution functions (PDFs) PDFs Charges Polarization Longitudinal momentum (fraction) Depends on : PDFs
6
Elastic scattering The form factors (FFs) FFsPDFs Charges Polarization Longitudinal momentum (fraction) Momentum transfer Depends on : FFs Cf. Kroll
7
DVCS The generalized PDFs (GPDs) GPDs FFsPDFs Charges Polarization Longitudinal momentum (fraction) Momentum transfer Depends on : FFs Cf. d’Hose, Guidal, Mueller, Murray, Pasquini, …
8
SIDIS The transverse momentum-dependent PDFs (TMDs) Polarization Longitudinal momentum (fraction) Momentum transfer Transverse momentum Depends on : TMDs No direct connection TMDs FFsPDFs Charges GPDs Cf. Anselmino, Aghasyan, Mulders, Scimemi, Signori, …
9
??? The generalized TMDs (GTMDs) Polarization Longitudinal momentum (fraction) Momentum transfer Transverse momentum Depends on : GTMDs TMDs FFsPDFs Charges GPDs GTMDs Cf. Liuti
10
TMCs TMFFs GTMDs TMDs ??? The complete zoo FFsPDFs Charges Polarization Longitudinal momentum (fraction) Momentum transfer Transverse momentum Depends on : GPDs GTMDs [C.L., Pasquini, Vanderhaeghen (2011)]
11
The double parton scattering [Thürman, Master thesis (2012)] DPDFs Polarization Longitudinal momentum (fraction) Momentum transfer Transverse momentum Inter-parton distance Depends on : [Diehl, Ostermeier, Schäfer (2012)]
12
The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions
13
The physical interpretation Initial/final Position Momentum Average/difference Fourier-conjugated variables
14
The physical interpretation Breit frame Lorentz contraction Creation/annihilation of pairs Position w.r.t. the CM Non-relativistic ! [Ernst, Sachs, Wali (1960)] [Sachs (1962)]
15
The physical interpretation Drell-Yan frame Lorentz contraction Creation/annihilation of pairs Position w.r.t. the center of momentum [Soper (1977)] [Burkardt (2000)]
16
The physical interpretation Quark Wigner operator Canonical momentum Either fix the gauge such that, i.e. work with + boundary condition Dirac matrix ~ quark polarization Wilson line Or split the Wilson line to form Dirac variables
17
The physical interpretation Quark Wigner operator Fixed light-front timeNo need for time-ordering ! Non-relativistic Wigner distribution Relativistic Wigner distribution [Ji (2003)] [Belitsky, Ji, Yuan (2004)] [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] 3+3D 2+3D GTMDs
18
The phase-space picture GTMDs TMDs FFsPDFs Charges GPDs 2+3D 2+1D 2+0D 0+3D 0+1D
19
The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions
20
The phase-space distribution Wigner distribution Probabilistic interpretation Expectation value Heisenberg’s uncertainty relations Position space Momentum space Phase space Galilei covariant Either non-relativistic Or restricted to transverse position [Wigner (1932)] [Moyal (1949)]
21
The quark orbital angular momentum GTMD correlator [C.L., Pasquini (2011)] Wigner distribution Orbital angular momentum [Meißner, Metz, Schlegel (2009)] Parametrization Unpolarized quark density
22
[Meißner, Metz, Schlegel (2009)] The parametrization @ twist-2 and =0 Parametrization : GTMDs TMDsGPDs MonopoleDipoleQuadrupole Nucleon polarization Quark polarization
23
FSIISI The path dependence Orbital angular momentum [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] [Ji, Xiong, Yuan (2012)] [C.L. (2013)] Drell-Yan Reference point SIDIS Canonical [Jaffe, Manohar (1990)][Ji (1997)] Kinetic
24
The proton spin decompositions Does not satisfy canonical relations Incomplete decomposition Gauge-invariant decomposition Accessible in DIS and DVCS Pros: Cons: News: [Wakamatsu (2009,2010)] Complete decomposition Pros: Cons: Satisfies canonical relations Complete decomposition Gauge-variant decomposition Missing observables for the OAM News: [Chen et al. (2008)] Gauge-invariant extension OAM accessible via Wigner distributions [C.L., Pasquini (2012)] [C.L., Pasquini, Xiong, Yuan(2012)] [Hatta (2012)] CanonicalKinetic [Jaffe, Manohar (1990)][Ji (1997)] [C.L. (2013)] [Leader, C.L. (in preparation)] Reviews : Cf. Burkardt, Zhang
25
The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions
26
Overlap representation MomentumPolarization [C.L., Pasquini, Vanderhaeghen (2011)] Light-front quark modelsWigner rotation The light-front overlap representation
27
Wigner distribution of unpolarized quark in unpolarized nucleon [C.L., Pasquini (2011)] The model results favored disfavored Left-right symmetryNo net quark OAM
28
Distortion induced by the nucleon longitudinal polarization [C.L., Pasquini (2011)] The model results Proton spin u-quark OAM d-quark OAM
29
Average transverse quark momentum in a longitudinally polarized nucleon [C.L., Pasquini, Xiong, Yuan (2012)] The model results « Vorticity »
30
Distortion induced by the quark longitudinal polarization [C.L., Pasquini (2011)] The model results Quark spin u-quark OAM d-quark OAM
31
Quark spin-nucleon spin correlation [C.L., Pasquini (2011)] The model results Proton spin u-quark spin d-quark spin
32
[C.L., Pasquini (2011)] The model results
33
The emerging picture [C.L., Pasquini (2011)] [Burkardt (2005)] [Barone et al. (2008)] LongitudinalTransverse Cf. Bacchetta
34
The canonical and kinetic OAM Quark canonical OAM Quark naive canonical OAM [Burkardt (2007)] [Efremov et al. (2008,2010)] [She, Zhu, Ma (2009)] [Avakian et al. (2010)] [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] Model-dependent ! Quark kinetic OAM [Ji (1997)] [Penttinen et al. (2000)] [Kiptily, Polyakov (2004)] [Hatta (2012)] but No gluons and not QCD EOM ! [C.L., Pasquini (2011)] Pure twist-3 Cf. Liuti
35
The conclusions Twist-2 parton distributions provide multidimensional pictures of the nucleon Relativistic phase-space distributions exist. Open question: how to access them? Both kinetic (Ji) and canonical (Jaffe-Manohar) are measurable (twist-2 and twist-3) Model calculations can test spin sum rules
36
Backup slides
37
OAM and origin dependence RelativeIntrinsicNaive Transverse center of momentum Physical interpretation ? Depends on proton position Equivalence IntrinsicRelativeNaive Momentum conservation
38
Momentum Fock expansion of the proton state Fock states Simultaneous eigenstates of Light-front helicity Overlap representation
39
Light-front wave functions Proton state Eigenstates of parton light-front helicity Eigenstates of total OAM Probability associated with the N, Fock state Normalization Overlap representation gauge
40
Fock-state contributions Overlap representation [C.L., Pasquini (2011)] [C.L. et al. (2012)] GTMDs TMDs GPDs Kinetic OAM Naive canonical OAM Canonical OAM
41
Incoherent scattering DVCS vs. SIDIS DVCSSIDIS GPDs TMDs FFs Factorization Compton form factor Cross section process dependent perturbative « universal » non-perturbative hardsoft
42
GPDs vs. TMDs GPDsTMDs Correlator Dirac matrix Wilson line Off-forward!Forward! FSIISI e.g. SIDISe.g. DY
43
LC helicity and canonical spin LC helicityCanonical spin Nucleon polarization Quark polarization Nucleon polarization [C.L., Pasquini (2011)]
44
Interesting relations Model relations ** * * * * Flavor-dependent Flavor-independent Linear relationsQuadratic relation Bag LF QSM LFCQM S Diquark AV Diquark Cov. Parton Quark Target [Jaffe, Ji (1991), Signal (1997), Barone & al. (2002), Avakian & al. (2008-2010)] [C.L., Pasquini, Vanderhaeghen (2011)] [Pasquini & al. (2005-2008)] [Ma & al. (1996-2009), Jakob & al. (1997), Bacchetta & al. (2008)] [Ma & al. (1996-2009), Jakob & al. (1997)] [Bacchetta & al. (2008)] [Efremov & al. (2009)] [Meißner & al. (2007)] * =SU(6) * * * * * *
45
Geometrical explanation Preliminaries Quasi-free quarks Spherical symmetry [C.L., Pasquini (2011)] Conditions: Light-front helicity Canonical spin Wigner rotation (reduces to Melosh rotation in case of FREE quarks)
46
Geometrical explanation Axial symmetry about z
47
Geometrical explanation Axial symmetry about z
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.