Download presentation
Presentation is loading. Please wait.
Published byEthel Carter Modified over 9 years ago
1
1. 2. 3. © Robust Design Of Multimachine Power System Stabilizers Using Simulated Annealing Abido, MA IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, IEEE TRANSACTIONS ON ENERGY CONVERSION; pp: 297-304; Vol: 15 King Fahd University of Petroleum & Minerals http://www.kfupm.edu.sa Summary Robust design of multimachine Power System Stabilizers (PSS's) using Simulated Annealing (SA) optimization technique is presented in this paper. The proposed approach employs SA to search for optimal parameter settings of a widely used conventional fixed-structure lead-lag PSS (CPSS). The parameters of the proposed simulated annealing based power system stabilizer (SAPSS) are optimized in order to shift the system electromechanical modes at different loading conditions and system configurations simultaneously to the left in the s-plane. Incorporation of SA as a derivative-free optimization technique in PSS design significantly reduces the computational burden. One of the main advantages of the proposed approach is its robustness to the initial parameter settings. In addition, the quality of the optimal solution does not rely on the initial guess. The performance of the proposed SAPSS under different disturbances and loading conditions is investigated for two multimachine power systems. The eigenvalue analysis and the nonlinear simulation results show the effectiveness of the proposed SAPSS's to damp out the local as well as the interarea modes and enhance greatly the system stability over a wide range of loading conditions and system configurations. References: AARTS E, 1998, SIMULATED ANNEALING ABDELMAGID YL, IEEE PES ABIDO MA, IEEE PES SUMM M Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa
2
4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. © ANDERSON PM, 1977, POWER SYSTEM CONTROL ARREDONDO JMR, 1997, INT J ELEC POWER, V19, P563 ASGHARIAN R, 1994, IEEE T ENERGY CONVER, V9, P475 BAZANELLA A, 1995, IEEE STOCKHOLM POWER, P256 CHEN CL, 1987, IEEE T POWER SYST, V2, P543 DEMELLO FP, 1969, IEEE T PAS, V88, P316 FLEMING RJ, 1981, IEEE T PAS, V100, P2329 GIBB WRG, 1991, MOVEMENT DISORD, V6, P2 HSU YY, 1987, IEE PROC-C, V134, P238 KUNDUR P, 1989, IEEE T POWER SYST, V4, P614 KWAKERNAAK H, 1993, AUTOMATICA, V29, P255 LARSEN EV, 1981, IEEE T PAS, V100, P3017 LIM CM, 1985, IEE PROC-C, V132, P146 MASLENNIKOV VA, 1996, P 12 POW SYST COMP C, P70 METROPOLIS N, 1953, J CHEM PHYS, V21, P1087 PAI MA, 1989, ENERGY FUNCTION ANAL POTTS JC, 1994, IEEE T SYST MAN CYB, V24, P73 SAMARASINGHE VGDC, 1997, IEE P-GENER TRANSM D, V144, P323 TSE CT, 1993, IEEE T POWER SYST, V8, P598 VIDYASAGAR M, 1986, AUTOMATICA, V22, P85 XIA DZ, 1983, IEEE T POWER AP SYST, V102, P1877 YANG TC, 1995, IFAC IFORS IMACS S L YANG TC, 1997, INT J ELEC POWER, V19, P29 ZHOU EZ, 1991, IEEE T ENERGY CONVER, V6, P170 For pre-prints please write to: abstracts@kfupm.edu.sa Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.