Download presentation
Presentation is loading. Please wait.
Published byMaria Lloyd Modified over 9 years ago
1
MMS I, Lecture 11 Course content MM1 Basic geometry and rotations MM2 Rotation parameters and kinematics MM3 Rotational Dynamics MM4 Manipulator Kinematics MM5 Manipulator Dynamics
2
MMS I, Lecture 12 Area of use Roll Pitch Yaw
3
MMS I, Lecture 13 Content off to day Vectors and coordinatsystems Direct cosinus matrices (DCM) Dirivitives in rotating coordinatsystems (Transport theorem) Ortogonal coordinat systems: Transformation T from one CS to another: T: R 3 R 3 Tv ·Tw = v ·w (preserve distance) Tv x Tw = v x w (preserve angle) T(v x w ) = v x w
4
MMS I, Lecture 14 Basic Geometry P ê3ê3 ê2ê2 ê1ê1 O x3x3 x2x2 x1x1 Vectors R 3 OP = ( p 1, p 2, p 3 ) T = (x 1,x 2,x 3 ) T x1x2x3x1x2x3 x = [ê 1 ê 2 ê 3 ] For ortogonal coordinat cystems: ê i · ê i = 1 ; ê 1 xê 2 = ê 3 ê i xê i = 0 ê 1 xê 3 = - ê 2 ê 2 xê 3 = ê 1 {A} x x = x 1 ê 1 + x 2 ê 2 + x 3 ê 3 ≡ ∑ x i ê i x i = x · ê i i=1 3
5
MMS I, Lecture 15 Kinematics Definition: ”Description of motion regardless of masses, forces and torques” ”Geometric description over time” Start Finish f(s(t)) v(t) a(t) no forces no torques Missing??
6
MMS I, Lecture 16 Dynamics Definition: ”Description of motion depending on masses M, inertia I, forces F and torques N ” Start Finish f(s(t)) v(t) a(t) M F N I ω(t) · Dynamic F N v(t) ω(t) Kinematics s(t) θ(t) θ(t) θ(t) a(t) ω(t) · ···
7
MMS I, Lecture 17 Rotation matrix Direct cosine â3â3 â2â2 â1â1 {A} {U} û3û3 û2û2 û1û1 â 1 = C 11 û 1 + C 12 û 2 + C 13 û 3 â 2 = C 21 û 1 + C 22 û 2 + C 23 û 3 â 3 = C 31 û 1 + C 32 û 2 + C 33 û 3 â 1 C 11 C 12 C 13 â 2 = C 21 C 22 C 23 â 3 C 31 C 32 C 33 û1û2û3û1û2û3 = C AU û1û2û3û1û2û3 â 1 · û 1 â 1 · û 2 â 1 · û 3 â 2 · û 1 â 2 · û 2 â 2 · û 3 â 3 · û 1 â 3 · û 2 â 3 · û 3 C AU = r r= r 1 û 1 + r 2 û 2 + r 3 û 3 = r’ 1 â 1 + r’ 2 â 2 + r’ 3 â 3 C AU is the rotationsmatrix fra A U
8
MMS I, Lecture 18 Direct cosine cont. Proporties of C AU : 1. C AU · C AU = I 2. C AU = C AU 3. det (C AU C AU ) = det I = det (C AU ) 2 = 1 ↔ det (C AU ) = + - 1 4. (â i · û 1 ) 2 + (â i · û 2 ) 2 + (â i · û 3 ) 2 = 1 i = (1,2,3,) T â 1 · û 1 â 1 · û 2 â 1 · û 3 â 2 · û 1 â 2 · û 2 â 2 · û 3 â 3 · û 1 â 3 · û 2 â 3 · û 3 T T = C AU C UA = û 1 · â 1 û 1 · â 2 û 1 · â 3 û 2 · â 1 û 2 · â 2 û 2 · â 3 û 3 · â 1 û 3 · â 2 û 3 · â 3 ↨ C AU = C UA T
9
MMS I, Lecture 19 Euler angels (3-2-1) 1 2 3 θ3θ3 1 2 θ2θ2 1 θ1θ1 con θ 3 sin θ 3 0 – sin θ 3 con θ 3 0 0 0 1 C 3 (θ 3 ) = con θ 2 0 – sin θ 2 0 1 0 sin θ 2 0 con θ 2 C 2 (θ 2 ) = 1 0 0 0 con θ 1 sin θ 1 0 – sin θ 1 con θ 1 C 1 (θ 1 ) = C UA = C UV C VW C WA = C 1 (θ 1 )·C 2 (θ 2 )·C 3 (θ 3 ) {A} {W} {V} {U}
10
MMS I, Lecture 110 Euler angels (3-2-1) cont. c 2 c 3 c 2 s 3 -s 2 s 1 s 2 c 3 – c 1 c 3 s 1 s 2 s 3 – c 1 s 3 s 1 c 2 c 1 s 2 c 3 + s 1 s 3 c 1 s 2 s 3 – s 1 c 3 c 1 c 2 Euler angels (3-1-3) Orbit planes c ψ c φ - s ψ s φ c θ s φ c ψ +c φ c θ s ψ s θ s ψ -c φ s ψ -s φ c θ c ψ -s φ s ψ +c φ c θ c ψ s θ c ψ s φ s θ -c φ s θ c θ 1 1 3 3 ψφ θ C ψ C θ C φ = Euler angels (2-3-1) NASA c 2 c 3 s 3 - s 2 c 3 -c 1 c 2 s 3 + s 1 s 2 c 1 c 3 c 1 s 2 s 3 + s 1 c 2 s 1 c 2 s 3 + c 1 s 2 -s 1 c 2 -s 1 s 2 s 3 + c 1 c 2 Pitch Yaw Roll C θ 1 C θ 3 C θ 2 = C θ 1 C θ 2 C θ 3 =
11
MMS I, Lecture 111 Vector differentiation Angular velocity: ê1ê1 ê2ê2 θ ω x P O ω = dθ dt = ω x â i = â i i = 1,2,3 dâiâi dt â1â1 â1â1 û3û3 â2â2 ω û2û2 û1û1 {A} {U} ω = ω 1 â 1 +ω 2 â 2 + ω 3 â 3 U · Something rotten!
12
MMS I, Lecture 112 Transportation Theorem â1â1 â1â1 û3û3 â2â2 ω AU û2û2 û1û1 {A} {U} P r r 1 â 1 +r 2 â 2 + r 3 â 3 r = = r = r 1 â 1 + r 2 â 2 + r 3 â 3 + r 1 â 1 +r 2 â 2 + r 3 â 3 = + r 1 ω x â 1 + r 2 ω x â 2 + r 3 ω x â 3 = + ω AU x r A V.I. dr dt A dr dt U · · · ·· · · dr dt A
13
MMS I, Lecture 113 Transportation Theorem dr dt A = + ω AU x r A dr dt U d dt d dt = + ω AU x + ω AU x r A + ω AU x r A + ω AU x (ω AU x r A ) = r A + 2 ω AU x r A + ω AU x r A + ω AU x (ω AU x r A ) dr dt A d dt dr dt A ·· · · · ·
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.