Download presentation
Presentation is loading. Please wait.
Published byHorace Terry Modified over 9 years ago
1
Time-resolved Fourier transform infrared emission spectra of HNC/HCN K. Kawaguchi & A. Fujimoto Okayama University
2
Introduction HNC : metastale isomer of HCN 0.62 eV higher energy isomerization reaction In low-temperature interstellar clouds [HNC] 〜 [HCN] (T. Hirota, ApJ, 1998) Branching ratio in recombination reaction HCNH + + e → HCN, HNC, CN [HCN]/[HNC] 〜 3 (T, Amano et al. 2004) Time-resolved Infrared emission spectra
3
Data Sampling in a FT Spectrometer He-Ne Laser Sampling for IR data = 15803 cm -1 < 8000 cm -1 Spectrum Fourier Transform Interferogram Path difference
4
Timing diagram for TRFTS Scan signal He-Ne laser Pulse event Sampling in usual TRFTS Sampling in our system TT Many scans are required One scan
5
Block diagram of TRFTS system ADC 4322 16 bit ≲ 2 MHz New method SX is replaced by FPGA (Field Programmable Gate Array)
6
Pulse discharge and time resolved spectra Scan He-Ne Discharge Trigger AD Trigger 100 sec (64) 64 interferograms Fourier Transform Max. 64 Spectra at preset time intervals Bruker SX PC, C++
7
Performance of time-resolved FT 1. wavenumber resolution : 0.008 cm -1 2. time resolution : 0.5 sec (FPGA) 3. pulse event frequency : < 40 kHz 4. number of time-resolved spectra resolution : up to 0.04 cm -1 : 64 0.016 cm -1 : 32 0.008 cm -1 : 16
8
Emission CH 4 ( 15mT ) C 2 H 3 CN ( 10mT ) He ( 1.35 T ) N 2 ( 120 mT ) He ( 6 T ) H 2 ( 60 mT ) anode He water cathode Expanded polystyrene Pump Liq.N 2 Dry ice ( in ethanol ) Window discharge Emission cell
9
Emission spectra of HCN, HNC ( at 77K) (32 s) HCN HNC P(9) P(17) P(3) R(8) R(2) R(15) P(9) P(3) P(14) R(9) R(16) R(3) 1 (100-000) (101-001) (200-100) 1 (100-000) (101-001) (200-100)
10
HCN emission 200 K CH 4 + N 2 60 points 3 sec step 0-180 sec covered (300-200) (200-100) (100-000)
11
Discharge 0-20 sec 200 K CH 4 + N 2 Vibrational relaxation 5 times shorter than CO
12
Time variation of emission spectra (at 77 K) HCN N2N2 HNC 2s2s12 s22 s 32 s 42 s52 s
13
Time variation of emission spectra (at 200 K) 2s2s12 s 22 s 32 s 42 s 52 s HCN HNC
14
( emission intensity of hot band : x 3 ) Time profile of emission intensities of HCN, HNC liq. N 2 Temp. Dry ice Temp.
15
Decay from (200) states of HNC and HCN 77 K
16
HCN Liq. N 2 Temp. 30 spectra are shown by different colors N 2 electronic
17
HCN emission : Comparison in two conditions 77 K CH 4 + N 2 200 K C 2 H 3 CN+ H 2 (100-000)(101-001) (110-010)
18
77 K CH 4 + N 2 200 K C 2 H 3 CN+ H 2 HNC emission (100-000) P(9) (101-001) P(6) N2N2 Decay from (101) is faster compared with above Temperature and/or chemical
19
Results (1) T vib, T rot ( 2 s after turning off the discharge) ● liq. N 2 temp. T vib ・・・ HCN 3350 (± 250) K HNC 2200 K T rot ・・・ HCN 263 (± 2) K HNC 340 (± 40) K ● dry ice temp. T vib ・・・ HCN 2750 (± 250) K HNC 2400 K T rot ・・・ HCN 379 (± 6) K HNC 480 (± 7) K Emission : increased after discharge-off If the increment is due to reactions, abundance ratio ● liq. N 2 temp. [HCN] : [HNC] = 40 : 4.3 ● dry ice temp. [HCN] : [HNC] = 10 : 1
20
Results (2) 1. decay from HNC (200) is fast (10 sec) compared with that of HCN (200) HNC – HCN conversion? 2. bending excited states : up to v 2 =2 (120) production vibrational relaxation 3. decay from (101) of HNC is fast in (C 2 H 3 CN + H 2 ) discharge at 200 K vibrational relaxation
21
HNC-HCN conversion HNC HCN
22
Acknowledgments K. Manabe Ibaraki University T. Amano (Ibaraki University)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.