Download presentation
Presentation is loading. Please wait.
Published byReynold Gibson Modified over 8 years ago
1
TNO Physics and Electronics Laboratory J. Kusmierczyk-Michulec G. de Leeuw
2
7 December 2004Aerosol optical thickness retrieval launched in March 2002 high-resolution (0.2-0.4 nm) spectrometer wavelength range: 240--2380 nm Swath Dim.: 960 km (cross track) by 25 km (along track at nadir) Nadir scan: 4 pixels of 240 km (cross track) by 25 km (along track) Limb scan: 960 km (cross track) vertical tangential step size 3.0 km The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board the ESA Envisat satellite http://envisat.esa.int/
3
7 December 2004Aerosol optical thickness retrieval The Global Ozone Monitoring Experiment (GOME) GOME aboard ERS-2 (courtesy of ESA) Launched in April 1995 4-channel grating spectrometer Spectral resolution 0.2-0.4 nm Wavelength range: 240 -790 nm One across-track : 3 ground pixels: 40 km x 320 km
4
7 December 2004Aerosol optical thickness retrieval Aerosol retrieval algorithm for SCIAMACHY/GOME where atm = R + a + aR s is the zenith solar angle is the zenith observation angle s - is the relative azimuth between the incident and observation vertical planes
5
7 December 2004Aerosol optical thickness retrieval Ra is based on the sunphotometer measurements in Ispra (03.06.98) (Holben et al. 1998) Rtoa - GOME data TOA reflectance - example
6
7 December 2004Aerosol optical thickness retrieval LER-Lambertian Equivalent Reflectance derived from reflectances measured by GOME (R. Koelemeijer et al., 2003) Spectral reflectances of natural surfaces -examples
7
7 December 2004Aerosol optical thickness retrieval Approach over land/water for GOME Reflectances at TOA measured by GOME (380, 440, 463, 495, 555, 670 nm) Cloud screening FRESCO algorithm (Koelemijer et al., 2001,2002) Correction for ozone absorption Surface correction GOME surface reflectances database LUT of aerosol/atmospheric/Rayleigh reflectances for a given satellite and solar geometry 3 predominantly aerosol types -“maritime”, - “continental”, - “urban”, The best fit with aerosol model AOD
8
7 December 2004Aerosol optical thickness retrieval
9
7 December 2004Aerosol optical thickness retrieval
10
7 December 2004Aerosol optical thickness retrieval
11
7 December 2004Aerosol optical thickness retrieval
12
7 December 2004Aerosol optical thickness retrieval
13
7 December 2004Aerosol optical thickness retrieval
14
7 December 2004Aerosol optical thickness retrieval
15
7 December 2004Aerosol optical thickness retrieval
16
7 December 2004Aerosol optical thickness retrieval
17
7 December 2004Aerosol optical thickness retrieval Outline
18
7 December 2004Aerosol optical thickness retrieval
19
7 December 2004Aerosol optical thickness retrieval
20
7 December 2004Aerosol optical thickness retrieval
21
7 December 2004Aerosol optical thickness retrieval
22
7 December 2004Aerosol optical thickness retrieval
23
7 December 2004Aerosol optical thickness retrieval We thank the PI investigators: Didier Tanré, Brent Holben, Philippe Goloub and Giuseppe Zibordi, and their staff for establishing and maintaining the AERONET sites used in this investigation. We acknowledge Piet Stammes and Martin de Graaf for kindly providing us GOME data and the results from FRESCO algorithm. The algorithm was developed as part of the EO-037 project of the National Data User Support Program of the Netherlands Space Research Organization (SRON).
24
7 December 2004Aerosol optical thickness retrieval Illustration of the retrieval process- example 1
25
7 December 2004Aerosol optical thickness retrieval Illustration of the retrieval process – example 2
26
7 December 2004Aerosol optical thickness retrieval Illustration of the retrieval process – example 3
27
7 December 2004Aerosol optical thickness retrieval
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.