Download presentation
Presentation is loading. Please wait.
Published byJoan Ward Modified over 8 years ago
1
for Solving Hierarchical Decomposable Functions Dept. of Computer Engineering, Chulalongkorn Univ., Bangkok, Thailand Simultaneity Matrix Assoc. Prof. Prabhas Chongstitvatana
2
1. Building blocks 2. Simple Genetic Algorithm 3. Test Functions 3.1 Additively Decomposable Functions (ADFs) 3.2 Hierarchically Decomposable Functions (HDFs) 4. Probabilistic Model Building Genetic Algorithms 5. Simultaneity Matrix 6. Simultaneity-Matrix-Construction (SMC) Algorithm 7. Partitioning (PAR) Algorithm 8. Experiment Setting 9. A Comparison to the Bayesian Optimization Algorithm 10. Conclusions and Recent Work A G E N D A
3
x = 11100f(x) = 28 x = 11011f(x) = 27 x = 10111f(x) = 23 x = 10100f(x) = 20 --------------------------- x = 01011f(x) = 11 x = 01010f(x) = 10 x = 00111f(x) = 7 x = 00000f(x) = 0 Induction 1 * * * * (Building Block)
4
x = 11111f(x) = 31 x = 11110f(x) = 30 x = 11101f(x) = 29 x = 10110f(x) = 22 --------------------------- x = 10101f(x) = 21 x = 10100f(x) = 20 x = 10010f(x) = 18 x = 01101f(x) = 13 1 * * * * (Building Block) Reproduction
5
x = 11111f(x) = 31 x = 11110f(x) = 30 x = 11101f(x) = 29 x = 10110f(x) = 22 --------------------------- x = 10101f(x) = 21 x = 10100f(x) = 20 x = 10010f(x) = 18 x = 01101f(x) = 13 Induction 1 * 1 * * (Building Blocks) 1 1 * * *
7
F 5 : {0,1} 5 {0,1,2,3,4,5} F 5 (11110) = 0 F 5 (11100) = 1 F 5 (11000) = 2 F 5 (10000) = 3 F 5 (00000) = 4 F 5 (11111) = 5 Trap Functions
8
11110 1110011000 10000 0123 00000 4 11111 5+++++ Fitness = 0 + 1 + 2 + 3 + 4 + 5 = 15 F 6x5 : {0,1} 30 {0,…,30} Additively Decomposable Functions (ADFs)
9
Hierarchically Decomposable Functions (HDFs)
10
x = 11100f(x) = 28 x = 11011f(x) = 27 x = 10111f(x) = 23 x = 10100f(x) = 20 --------------------------- x = 01011f(x) = 11 x = 01010f(x) = 10 x = 00111f(x) = 7 x = 00000f(x) = 0
11
x = 11111f(x) = 31 x = 11110f(x) = 30 x = 11101f(x) = 29 x = 10110f(x) = 22 --------------------------- x = 10101f(x) = 21 x = 10100f(x) = 20 x = 10010f(x) = 18 x = 01101f(x) = 13
12
Bayesian Optimization Algorithm (BOA)
13
Searching for a network structure that maximizes the scoring metric is NP-hard.
14
{{0,1,2},{3,4,5},{6,7,8},{9,10,11},{12,13,14}}
15
0011 0110 0110 0011 0001 0100 0010 0011 0100 0001 0111 0111
16
00…… 01…… 01…… 10…… 10…… 10…… 11…… 11…… 11…… 11…… m 0,1 = (1 x 4) + (2 x 3) = 4 + 6 = 10
17
Time Complexity = O(l 2 n)
18
P = {{0,1,2}, …} P = {{0,1,2,3,4,5},…}
19
H max, H min L min
20
Time Complexity = O(l 4 )
21
{{0,1,2},{3,4,5},{6,7,8},{9,10,11},{12,13,14}}
22
Random Solutions Selection Solution Recombination Building-block Identification
28
Conclusions 1. Building Bayesian network is time-consuming. 2. Simultaneity Matrix can be computed in O(l 2 n). 3. Partitioning can be done in O(l 4 ). 4. Scalability (ADFs and HDFs). 1. Chi-square Matrix (CSM). Recent work
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.