Presentation is loading. Please wait.

Presentation is loading. Please wait.

Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT.

Similar presentations


Presentation on theme: "Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT."— Presentation transcript:

1 start

2 Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT scheme

3 Density Functional Theory Functional - electron density Total energy Ansatz Many particle problem (M electrons)

4 Kohn-Sham-equations Approximation for V XC  LDA (LDA – Local Density Approximation) Gradient expansion  GGA

5 Methodology of approximate DFT Basic Concepts Local potential! Representation: Numerical on a grid Analytical with auxiliary functions

6 (N nuclei) Many centre problem Ansatz Atomic Orbitals - LCAO Gauss type Orbitals - LCGTO Plane Waves - PW Muffin Tin Orbitals - LMTO Slater type Orbitals - LCSTO

7 LCAO Ansatz Secular equations Hamilton matrix Overlap matrix LCAO method

8 Practical and Computational aspects Basis sets, Approximations… Basis functions Slater Type Orbitals - STO Gauss Type Orbitals – GTO (cartesian Gaussians ) Atomic Orbitals - AO

9 Atomic Orbitals – AO’s  Analytical representation  Linear combination of Slater type orbitals (STO) with

10 Optimization of basis functions  Confinement potential Example: Cu (r 0 =3.5,n 0 =4)

11  Bonding” behaviour (Linear combination of Cu-4s(A)-Cu-4s(B))  Variational behaviour (Band energies of Cu as function of r 0 )

12  Valence basis - basis function (AO) at A, B -core function at A, B V A - potential at A, B

13  Core-Orthogonalization - orthogonalized basis function - non-orthogonalized basis function (AO) -core function at l  Pseudopotentials V l PP I II Pseudopotentials for three centre (I) and crystal field (II) integrals

14  Pseudopotential compensation (Example: Cu (fcc), i-neighbour shell) μνi 4s 0-0.02560.0108-0.0148 4s 1-0.00330.0025-0.0008 4s 2-0.00120.00140.0002 4s 3-0.00020.0001-0.0001 4s5s0-0.05970.0471-0.0126 4s5s1-0.01180.0107-0.0011 5s 0-0.21200.2073-0.0053 5s 1-0.04720.0465-0.0007 minimal number of 3-centre integrals (numerical calculation) 2-centre integrals (analytical calc.– Eschrig phys.stat.sol. b96, 329 (1979))

15 Optimization of the Potential V eff V j 0 – potential of a „neutral“ atom not free atom! Q = 0 – for a neutral system

16 Potential of atomic N and around N in N 2 (spherically averaged)

17 Potential along the N-N axis in N 2 Matrix elements Example: N 2 molecule Neglect PP-terms

18 Kohn-Sham energies in CO Neglect PP-terms

19 SCF-DFT calculation (FPLO) Band Structure

20 DFTB calculation Band Structure

21 SCF-DFT calculation (FPLO) Band Structure DFTB calculation

22 Heteronuclear Systems A - B Charge transfer A B not in real space!! q A, q B projection to basis functions on A and B but not

23 Kohn-Sham energies in HF 1σ1σ 1σ1σ 1π1π 2s F 2p F 1s H R eq. - - - Neglect PP-terms V 0 F, V 0 H ___ SCF Dipolmoment: DFTB – 2.1 D exp. 1,8 D

24 Cadmiumsulfide — DFTB — SCF-LCAO-DFT (FPLO)

25

26 Density-Functional - Total energy electron density magnetization density Density fluctuations: Expansion of E DFT around n=n 0, μ=0 up to 2nd order

27 Density-Functional based „ tight binding “ DF-TB Density-Functional total energy 2nd order approximation

28 Cancellation of „double counting terms“ E B /eV U(R jk ) E B - U(R jk ) Li 2 - dimer Short range repulsive energy U(R jk ) R/a B

29 Approximations: Minimal (valence) basis in LCAO ansatz Neglect of pseudopotential terms in h 0 μν  2-center representation! -Mulliken gross population at j 2nd order approximation in energy

30 Approximation for magnetization density

31 Hamiltonian: : Energy : Self Consistent Charge method SCC-DFTB

32 Forces in DFTB Forces – electronic contribution Forces – contribution from repulsive energy U

33 Practical Realization of DFTB Atomic DFT calculations Hamilton and Overlap matrix Solution of the secular problem Calculation of: Calculation of Energy and Forces Self consistent charge - SCC DFT calculations of reference molecules Repulsive energies

34 end


Download ppt "Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT."

Similar presentations


Ads by Google