Download presentation
Presentation is loading. Please wait.
Published byErik Lamb Modified over 9 years ago
1
Fig. 16-1
2
Fig. 16-2 Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells Mouse dies Mouse healthy Living S cells RESULTS EXPERIMENT
3
Fig. 16-3 Bacterial cell Phage head Tail sheath Tail fiber DNA 100 nm
4
Fig. 16-4-1 EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P)
5
Fig. 16-4-2 EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P) Empty protein shell Phage DNA
6
Fig. 16-4-3 EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P) Empty protein shell Phage DNA Centrifuge Pellet Pellet (bacterial cells and contents) Radioactivity (phage protein) in liquid Radioactivity (phage DNA) in pellet
7
Fig. 16-5 Sugar–phosphate backbone 5 end Nitrogenous bases Thymine (T) Adenine (A) Cytosine (C) Guanine (G) DNA nucleotide Sugar (deoxyribose) 3 end Phosphate
8
Fig. 16-6 (a) Rosalind Franklin (b) Franklin’s X-ray diffraction photograph of DNA
9
Fig. 16-6a (a) Rosalind Franklin
10
Fig. 16-6b (b) Franklin’s X-ray diffraction photograph of DNA
11
Fig. 16-7 (c) Space-filling model Hydrogen bond 3 end 5 end 3.4 nm 0.34 nm 3 end 5 end (b) Partial chemical structure(a) Key features of DNA structure 1 nm
12
Fig. 16-7a Hydrogen bond 3 end 5 end 3.4 nm 0.34 nm 3 end 5 end (b) Partial chemical structure(a) Key features of DNA structure 1 nm
13
Fig. 16-7b (c) Space-filling model
14
Fig. 16-UN1 Purine + purine: too wide Pyrimidine + pyrimidine: too narrow Purine + pyrimidine: width consistent with X-ray data
15
Fig. 16-8 Cytosine (C) Adenine (A)Thymine (T) Guanine (G)
16
Fig. 16-9-1 A T G C TA TA G C (a) Parent molecule
17
Fig. 16-9-2 A T G C TA TA G C A T G C T A T A G C (a) Parent molecule (b) Separation of strands
18
Fig. 16-9-3 A T G C TA TA G C (a) Parent molecule AT GC T A T A GC (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand (b) Separation of strands A T G C TA TA G C A T G C T A T A G C
19
Fig. 16-10 Parent cell First replication Second replication (a) Conservative model (b) Semiconserva- tive model (c) Dispersive model
20
Fig. 16-11 EXPERIMENT RESULTS CONCLUSION 1 2 4 3 Conservative model Semiconservative model Dispersive model Bacteria cultured in medium containing 15 N Bacteria transferred to medium containing 14 N DNA sample centrifuged after 20 min (after first application) DNA sample centrifuged after 40 min (after second replication) More dense Less dense Second replicationFirst replication
21
Fig. 16-11a EXPERIMENT RESULTS 1 3 2 4 Bacteria cultured in medium containing 15 N Bacteria transferred to medium containing 14 N DNA sample centrifuged after 20 min (after first application) DNA sample centrifuged after 20 min (after second replication) Less dense More dense
22
Fig. 16-11b CONCLUSION First replicationSecond replication Conservative model Semiconservative model Dispersive model
23
Fig. 16-12 Origin of replication Parental (template) strand Daughter (new) strand Replication fork Replication bubble Two daughter DNA molecules (a) Origins of replication in E. coli Origin of replicationDouble-stranded DNA molecule Parental (template) strand Daughter (new) strand Bubble Replication fork Two daughter DNA molecules (b) Origins of replication in eukaryotes 0.5 µm 0.25 µm Double- stranded DNA molecule
24
Fig. 16-12a Origin of replication Parental (template) strand Daughter (new) strand Replication fork Replication bubble Double- stranded DNA molecule Two daughter DNA molecules (a) Origins of replication in E. coli 0.5 µm
25
Fig. 16-12b 0.25 µm Origin of replicationDouble-stranded DNA molecule Parental (template) strand Daughter (new) strand Bubble Replication fork Two daughter DNA molecules (b) Origins of replication in eukaryotes
26
Fig. 16-13 Topoisomerase Helicase Primase Single-strand binding proteins RNA primer 5 5 53 3 3
27
Fig. 16-14 A C T G G G GC CC C C A A A T T T New strand 5 end Template strand 3 end 5 end 3 end 5 end 3 end Base Sugar Phosphate Nucleoside triphosphate Pyrophosphate DNA polymerase
28
Fig. 16-15 Leading strand Overview Origin of replication Lagging strand Leading strandLagging strand Primer Overall directions of replication Origin of replication RNA primer “Sliding clamp” DNA poll III Parental DNA 5 3 3 3 3 5 5 5 5 5
29
Fig. 16-15a Overview Leading strand Lagging strand Origin of replication Primer Overall directions of replication
30
Fig. 16-15b Origin of replication RNA primer “Sliding clamp” DNA pol III Parental DNA 3 5 5 5 5 5 5 3 3 3
31
Fig. 16-16 Overview Origin of replication Leading strand Lagging strand Overall directions of replication Template strand RNA primer Okazaki fragment Overall direction of replication 1 2 3 2 1 1 1 1 2 2 5 1 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 3 3
32
Fig. 16-16a Overview Origin of replication Leading strand Lagging strand Overall directions of replication 1 2
33
Fig. 16-16b1 Template strand 5 5 3 3
34
Fig. 16-16b2 Template strand 5 5 3 3 RNA primer 3 5 5 3 1
35
Fig. 16-16b3 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment
36
Fig. 16-16b4 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment 1 2 3 3 5 5
37
Fig. 16-16b5 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment 1 2 3 3 5 5 1 2 3 3 5 5
38
Fig. 16-16b6 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment 1 2 3 3 5 5 1 2 3 3 5 5 1 2 5 5 3 3 Overall direction of replication
39
Fig. 16-17 Overview Origin of replication Leading strand Lagging strand Overall directions of replication Leading strand Lagging strand Helicase Parental DNA DNA pol III PrimerPrimase DNA ligase DNA pol III DNA pol I Single-strand binding protein 5 3 5 5 5 5 3 3 3 3 1 3 2 4
40
Table 16-1
41
Fig. 16-18 Nuclease DNA polymerase DNA ligase
42
Fig. 16-19 Ends of parental DNA strands Leading strand Lagging strand Last fragment Previous fragment Parental strand RNA primer Removal of primers and replacement with DNA where a 3 end is available Second round of replication New leading strand New lagging strand Further rounds of replication Shorter and shorter daughter molecules 5 3 3 3 3 3 5 5 5 5
43
Fig. 16-20 1 µm
44
Fig. 16-21a DNA double helix (2 nm in diameter) Nucleosome (10 nm in diameter) Histones Histone tail H1 DNA, the double helixHistones Nucleosomes, or “beads on a string” (10-nm fiber)
45
Fig. 16-21b 30-nm fiber Chromatid (700 nm) LoopsScaffold 300-nm fiber Replicated chromosome (1,400 nm) 30-nm fiber Looped domains (300-nm fiber) Metaphase chromosome
46
Fig. 16-22 RESULTS Condensin and DNA (yellow) Outline of nucleus Condensin (green) DNA (red at periphery) Normal cell nucleus Mutant cell nucleus
47
Fig. 16-UN2 Sugar-phosphate backbone Nitrogenous bases Hydrogen bond G C A T G G G A A A T T T C C C
48
Fig. 16-UN3 DNA pol III synthesizes leading strand continuously Parental DNA DNA pol III starts DNA synthesis at 3 end of primer, continues in 5 3 direction Lagging strand synthesized in short Okazaki fragments, later joined by DNA ligase Primase synthesizes a short RNA primer 5 3 5 5 5 3 3
49
Fig. 16-UN4
50
Fig. 16-UN5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.