Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fig. 16-1. Fig. 16-2 Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells.

Similar presentations


Presentation on theme: "Fig. 16-1. Fig. 16-2 Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells."— Presentation transcript:

1 Fig. 16-1

2 Fig. 16-2 Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells Mouse dies Mouse healthy Living S cells RESULTS EXPERIMENT

3 Fig. 16-3 Bacterial cell Phage head Tail sheath Tail fiber DNA 100 nm

4 Fig. 16-4-1 EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P)

5 Fig. 16-4-2 EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P) Empty protein shell Phage DNA

6 Fig. 16-4-3 EXPERIMENT Phage DNA Bacterial cell Radioactive protein Radioactive DNA Batch 1: radioactive sulfur ( 35 S) Batch 2: radioactive phosphorus ( 32 P) Empty protein shell Phage DNA Centrifuge Pellet Pellet (bacterial cells and contents) Radioactivity (phage protein) in liquid Radioactivity (phage DNA) in pellet

7 Fig. 16-5 Sugar–phosphate backbone 5 end Nitrogenous bases Thymine (T) Adenine (A) Cytosine (C) Guanine (G) DNA nucleotide Sugar (deoxyribose) 3 end Phosphate

8 Fig. 16-6 (a) Rosalind Franklin (b) Franklin’s X-ray diffraction photograph of DNA

9 Fig. 16-6a (a) Rosalind Franklin

10 Fig. 16-6b (b) Franklin’s X-ray diffraction photograph of DNA

11 Fig. 16-7 (c) Space-filling model Hydrogen bond 3 end 5 end 3.4 nm 0.34 nm 3 end 5 end (b) Partial chemical structure(a) Key features of DNA structure 1 nm

12 Fig. 16-7a Hydrogen bond 3 end 5 end 3.4 nm 0.34 nm 3 end 5 end (b) Partial chemical structure(a) Key features of DNA structure 1 nm

13 Fig. 16-7b (c) Space-filling model

14 Fig. 16-UN1 Purine + purine: too wide Pyrimidine + pyrimidine: too narrow Purine + pyrimidine: width consistent with X-ray data

15 Fig. 16-8 Cytosine (C) Adenine (A)Thymine (T) Guanine (G)

16 Fig. 16-9-1 A T G C TA TA G C (a) Parent molecule

17 Fig. 16-9-2 A T G C TA TA G C A T G C T A T A G C (a) Parent molecule (b) Separation of strands

18 Fig. 16-9-3 A T G C TA TA G C (a) Parent molecule AT GC T A T A GC (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand (b) Separation of strands A T G C TA TA G C A T G C T A T A G C

19 Fig. 16-10 Parent cell First replication Second replication (a) Conservative model (b) Semiconserva- tive model (c) Dispersive model

20 Fig. 16-11 EXPERIMENT RESULTS CONCLUSION 1 2 4 3 Conservative model Semiconservative model Dispersive model Bacteria cultured in medium containing 15 N Bacteria transferred to medium containing 14 N DNA sample centrifuged after 20 min (after first application) DNA sample centrifuged after 40 min (after second replication) More dense Less dense Second replicationFirst replication

21 Fig. 16-11a EXPERIMENT RESULTS 1 3 2 4 Bacteria cultured in medium containing 15 N Bacteria transferred to medium containing 14 N DNA sample centrifuged after 20 min (after first application) DNA sample centrifuged after 20 min (after second replication) Less dense More dense

22 Fig. 16-11b CONCLUSION First replicationSecond replication Conservative model Semiconservative model Dispersive model

23 Fig. 16-12 Origin of replication Parental (template) strand Daughter (new) strand Replication fork Replication bubble Two daughter DNA molecules (a) Origins of replication in E. coli Origin of replicationDouble-stranded DNA molecule Parental (template) strand Daughter (new) strand Bubble Replication fork Two daughter DNA molecules (b) Origins of replication in eukaryotes 0.5 µm 0.25 µm Double- stranded DNA molecule

24 Fig. 16-12a Origin of replication Parental (template) strand Daughter (new) strand Replication fork Replication bubble Double- stranded DNA molecule Two daughter DNA molecules (a) Origins of replication in E. coli 0.5 µm

25 Fig. 16-12b 0.25 µm Origin of replicationDouble-stranded DNA molecule Parental (template) strand Daughter (new) strand Bubble Replication fork Two daughter DNA molecules (b) Origins of replication in eukaryotes

26 Fig. 16-13 Topoisomerase Helicase Primase Single-strand binding proteins RNA primer 5 5 53 3 3

27 Fig. 16-14 A C T G G G GC CC C C A A A T T T New strand 5 end Template strand 3 end 5 end 3 end 5 end 3 end Base Sugar Phosphate Nucleoside triphosphate Pyrophosphate DNA polymerase

28 Fig. 16-15 Leading strand Overview Origin of replication Lagging strand Leading strandLagging strand Primer Overall directions of replication Origin of replication RNA primer “Sliding clamp” DNA poll III Parental DNA 5 3 3 3 3 5 5 5 5 5

29 Fig. 16-15a Overview Leading strand Lagging strand Origin of replication Primer Overall directions of replication

30 Fig. 16-15b Origin of replication RNA primer “Sliding clamp” DNA pol III Parental DNA 3 5 5 5 5 5 5 3 3 3

31 Fig. 16-16 Overview Origin of replication Leading strand Lagging strand Overall directions of replication Template strand RNA primer Okazaki fragment Overall direction of replication 1 2 3 2 1 1 1 1 2 2 5 1 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 3 3

32 Fig. 16-16a Overview Origin of replication Leading strand Lagging strand Overall directions of replication 1 2

33 Fig. 16-16b1 Template strand 5 5 3 3

34 Fig. 16-16b2 Template strand 5 5 3 3 RNA primer 3 5 5 3 1

35 Fig. 16-16b3 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment

36 Fig. 16-16b4 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment 1 2 3 3 5 5

37 Fig. 16-16b5 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment 1 2 3 3 5 5 1 2 3 3 5 5

38 Fig. 16-16b6 Template strand 5 5 3 3 RNA primer 3 5 5 3 1 1 3 3 5 5 Okazaki fragment 1 2 3 3 5 5 1 2 3 3 5 5 1 2 5 5 3 3 Overall direction of replication

39 Fig. 16-17 Overview Origin of replication Leading strand Lagging strand Overall directions of replication Leading strand Lagging strand Helicase Parental DNA DNA pol III PrimerPrimase DNA ligase DNA pol III DNA pol I Single-strand binding protein 5 3 5 5 5 5 3 3 3 3 1 3 2 4

40 Table 16-1

41 Fig. 16-18 Nuclease DNA polymerase DNA ligase

42 Fig. 16-19 Ends of parental DNA strands Leading strand Lagging strand Last fragment Previous fragment Parental strand RNA primer Removal of primers and replacement with DNA where a 3 end is available Second round of replication New leading strand New lagging strand Further rounds of replication Shorter and shorter daughter molecules 5 3 3 3 3 3 5 5 5 5

43 Fig. 16-20 1 µm

44 Fig. 16-21a DNA double helix (2 nm in diameter) Nucleosome (10 nm in diameter) Histones Histone tail H1 DNA, the double helixHistones Nucleosomes, or “beads on a string” (10-nm fiber)

45 Fig. 16-21b 30-nm fiber Chromatid (700 nm) LoopsScaffold 300-nm fiber Replicated chromosome (1,400 nm) 30-nm fiber Looped domains (300-nm fiber) Metaphase chromosome

46 Fig. 16-22 RESULTS Condensin and DNA (yellow) Outline of nucleus Condensin (green) DNA (red at periphery) Normal cell nucleus Mutant cell nucleus

47 Fig. 16-UN2 Sugar-phosphate backbone Nitrogenous bases Hydrogen bond G C A T G G G A A A T T T C C C

48 Fig. 16-UN3 DNA pol III synthesizes leading strand continuously Parental DNA DNA pol III starts DNA synthesis at 3 end of primer, continues in 5  3 direction Lagging strand synthesized in short Okazaki fragments, later joined by DNA ligase Primase synthesizes a short RNA primer 5 3 5 5 5 3 3

49 Fig. 16-UN4

50 Fig. 16-UN5


Download ppt "Fig. 16-1. Fig. 16-2 Living S cells (control) Living R cells (control) Heat-killed S cells (control) Mixture of heat-killed S cells and living R cells."

Similar presentations


Ads by Google