Download presentation
Presentation is loading. Please wait.
Published byKelly Edwards Modified over 8 years ago
1
Modelleerimine ja Juhtimine Tehisnärvivõrgudega ---------------------------------------------- Identification and Control with artificial neural networks Eduard Petlenkov, Eduard Petlenkov, 2015
2
Artificial neuron Eduard Petlenkov, 2015 Weighted sum Nonlinear element Input vector: Vector of weight coeffitients: Weighted sum :
3
3 Biological neuron and biological neural networks Eduard Petlenkov, 2015
4
Activation functions (1) Eduard Petlenkov, 2015 OUT=f(NET) Sigmoid functions are having an "S" shape (sigmoid curve) 1 Logistic function 2 Hyperbolic tangent
5
Types of artificial neural networks Structure: Feedforward Feedback internal feedback external feedback Training/ learning: Supervised learning Selflearning (unsupervised) inputs etalon Training criteria Eduard Petlenkov, 2015
6
How to use artificial neural networks Network Inputs Outputs Eduard Petlenkov, 2015 Data preprocessing Interpritation of results
7
Feedforward neural networks and multilayer perceptron Eduard Petlenkov, 2015 Feedforward networks are networks in which an output of a neuron can be connected only with an input of a next layer neuron. “from each to each” - Input layer - Output layer - Hidden layer - Weighting coefficients, where is the number of the neuron’s input - neuron’s number in the layer - number of the layer
8
Mathematical function of a two-layer perceptron Eduard Petlenkov, 2015 - Activation function of the hiddent layer neurons; - Activation function of the output layer neurons.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.