Download presentation
Presentation is loading. Please wait.
Published bySherman Gardner Modified over 9 years ago
1
WARM-UP Find the volume of each solid. 8 6 12 18 19 10 1213
2
SURFACE AREA PRISMS AND CYLINDERS
3
DEFINITIONS Prism: 3-D shape with two congruent bases. Surface Area: the sum of the areas of all the surfaces that bound the solid
4
PRISMS To understand surface area it helps to look at the “net” of the shape. 6m 8m 10m 10m 8m8m6m6m 6m 10m
5
PRISMS To find SA, you can just calculate the area of all the individual rectangles and add. 10m 8m 6m 10m 10(8)(2)=160 10(6)(2)=120 8(6)(2) = 96 SA = 376 m 2
6
PRISMS There is an alternative… 6 5 3 4 66 534 5 4 Notice the middle is one big rectangle The height is the same as the prism, and the length is the same as the perimeter of the base triangle. SA = area of two bases + area of big rectangle… SA = 2B + Ph SA = 2(0.5)(3)(4)+12(6) SA = 12 + 72 SA = 84 sq. units
7
PRISM - EXAMPLE 1. Find the surface area of the rectangular prism. Method 1: 7(5)(2) = 70 9(7)(2) = 126 9(5)(2) = 90 SA = 286 sq. units 9 5 7 Method 2: SA = 2B + Ph SA = 2(5)(7)+24(9) SA = 70 + 216 SA = 286 sq. units
8
PRISM - EXAMPLE 2. Find the surface area of the triangular prism. Method 1: 0.5(12)(5)(2) = 60 5(20) = 100 12(20) = 240 13(20) = 260 SA = 660 sq. units Method 2: SA = 2B + Ph SA = 2(0.5)(5)(12) + 30(20) SA = 60 + 600 SA = 660 sq. units 20 13 5 12
9
CYLINDERS There is one major difference between prisms and cylinders. With prisms, SA can be found using two different methods: break it up or use the formula: 2B+Ph With cylinders there is not a choice, the formula must be used.
10
CYLINDERS Let’s look at the “net” of a cylinder. 8 14 14 8 16 d = (16)
11
CYLINDERS Use the formula for a prism: 2B+Ph. There is no perimeter, but there is circumference. The specific formula for SA of cylinder is… 14 8 16 d = (16) SA = 2 r 2 + dh
12
EXAMPLE-CYLINDER 1. Find the surface area of the cylinder 8 14 SA = 2 r 2 + dh SA = 2 8 2 + (16)(14) SA = 128 + 224 SA = 352 sq. units (EXACT ANSWER) or SA = 1105.28 sq.units
13
EXAMPLE-CYLINDER 2. Find the surface area of the cylinder 18 27 SA = 2 r 2 + dh SA = 2 9 2 + (18)(27) SA = 162 + 486 SA = 648 sq. units (EXACT ANSWER) or SA = 2034.72 sq.units
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.