Presentation is loading. Please wait.

Presentation is loading. Please wait.

Forschung am X-Ray FEL Gerhard Grübel Hasylab/DESY, Notke-Strasse 85, 22607 Hamburg.

Similar presentations


Presentation on theme: "Forschung am X-Ray FEL Gerhard Grübel Hasylab/DESY, Notke-Strasse 85, 22607 Hamburg."— Presentation transcript:

1 Forschung am X-Ray FEL Gerhard Grübel Hasylab/DESY, Notke-Strasse 85, 22607 Hamburg

2 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Properties of FEL radiation X-ray FEL radiation (0.2 - 14.4 keV) ultrashort pulse duration100 fs extreme pulse intensities10 12 -10 14 ph coherent radiationx10 9 average brilliancex10 4 Spontaneous radiation (20-200 keV) ultrashort pulse duration<200 fs high brilliance x10 9 Intensity I Time t FEL radiation 10 13 phts/pulse 100 fs duration SR radiation 10 9 phts/pulse 100 ps duration

3 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Scientific applications using x–ray FELs Atoms, ions, molecules, and clusters Multiple ionization and multiphoton events Creation and spectroscopy of excited states (hollow atoms, Rydberg states, Laser states,....) Dynamics, electronic & geom. cluster properties Plasma physics Generation of solid-density plasmas Plasma diagnostics Condensed-matter physics Ultrafast dynamics Electronic structure Disordered materials & soft matter Materials sciences Dynamics of hard materials Structure and dynamics of nanomaterials Chemistry Reaction dynamics in solid, liquid systems Analytical solid-state chemistry Heterogenous catalysis Structural biology Single molecule/particle imaging Dynamics of biomolecules Optics and nonlinear phenomena Nonlinear effects in atoms and solids High field science Center of XFEL science Ultrashort pulses Pulse intensities Average brilliance Coherence

4 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Dynamics of Biomolecules Example:Myoglobin protein found in muscle, stores oxygen for conversion into energy. Structure solved in 1960 (Kendrew). Puzzle: How does the oxygen get into and out of the myoglobin molecule. The protein is not static but dynamic with channels opening and closing?  Time resolved Laue Diffraction Use CO instead of O 2. Use 10 ns optical pulse to photodissociate CO from the Fe docking site. Probe dynamics with a 100 ps x-ray pulse. Courtesy M. Wulff

5 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Dynamics of Biomolecules Courtesy M. Wulff

6 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Dynamics of Biomolecules Courtesy M. Wulff

7 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Dynamics of Biomolecules Courtesy M. Wulff

8 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Dynamics of Biomolecules Today:study (structure) and dynamics on a ns to ps timescale Tomorrow:study (structure) and dynamics on a sub-ps timescale

9 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Scattering with Coherent X-Rays If coherent light is scattered from a disordered system it gives rise to a random (grainy) diffraction pattern, known as “speckle”. A speckle pattern is an inter- ference pattern and related to the exact spatial arrangement of the scatterers in the disordered system. I(Q,t)  S c (Q,t)  |  f j (Q) e iQR j (t) | 2 j in coherence volume c=  t 2  l Incoherent Light: S(Q,t) = V>>c ensemble average Aerogel =1Å CCD (22  m) Abernathy, Grübel, et al. J. Synchroton Rad. 5, 37, 1998

10 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Speckle Reconstruction Reconstruction (phasing) of a speckle pattern: “oversampling” technique gold dots on SiN membrane =17Å coherent beam at X1A reconstruction (0.1  m diameter, 80 nm thick)(NSLS), 1.3. 10 9 ph/s 10  m pinhole “oversampling” technique 24  m x 24  m pixel CCD Miao, Charalambous, Kirz, Sayre, Nature, 400, July 1999 other examples: nanocrystalline materials (Williams et al., PRL90,175501,2003; He et al.,PRB67,174114,2003)

11 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Perspectives with a coherent XFEL Source Synchrotron SourcesXFEL Fc/bunch  100  10 12 # bunches(time)10 8 -10 10 (1-100s)1 (100 fs) to record a speckle pattern (10 10 -10 12 ph) Structure determination of single macromolecules? About 20-40% of all protein molecules, including the important membrane proteins are difficult or impossible to crystallize. Need about 10 18 ph for reconstruction of 3D pattern from single molecule. A single molecule is predicted to withstand about 10 12 ph/10 fs. Need  10 6 single molecules Fast Dynamics in the Time Domain ?

12 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Reconstructed 3-D pattern (from 250 2-D projections). Phasing by “oversampling” technique. 3-D structure (2.5 Å resolution) of rubisco molecule. (106 kDa) Top view of a section (kz=0) of 3-D scattering pattern from 10 6 single molecules (of known relative orientation) each “exposed” by a single 10 fs XFEL pulse ( =1.5Å, 0.1  m beamsize) containing 2. 10 12 photons. J. Miao, K.O. Hodgson and D. Sayre, PNAS, 98, 6641 (2001) An approach to three-dimensional structures of biomolecules by using single- molecule diffraction images: A simulation Single Molecule Diffraction

13 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Beam – Sample Interaction

14 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Scattering with Coherent X-Rays If coherent light is scattered from a disordered system it gives rise to a random (grainy) diffraction pattern, known as “speckle”. A speckle pattern is an inter- ference pattern and related to the exact spatial arrangement of the scatterers in the disordered system. I(Q,t)  S c (Q,t)  |  f j (Q) e iQR j (t) | 2 j in coherence volume c=  t 2  l Incoherent Light: S(Q,t) = V>>c ensemble average Aerogel =1Å CCD (22  m) Abernathy, Grübel, et al. J. Synchroton Rad. 5, 37, 1998

15 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Photon correlation spectroscopy (PCS) Gaussian fluctuations (g 2 =1+|g 1 | 2 ), no optical mixing/heterodyning: g(Q,t)= / 2 = 1 +  (Q) | f(Q,t)| 2  (Q): contrast f(Q,t) = F(Q,t) / F(Q,0): normalized intermediate scattering function F(Q,t)=(1/(Nf 2 (Q))  n  m F(Q,0) = S(Q) static structure factor Diffusive Processes:f(Q,t) = exp (-  t)  min = 1 /   100 ns (overlap to Neutron Spin Echo NSE technique)

16 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 X-Ray Photon correlation spectroscopy (XPCS) Brownian motion (Silica, 2610 Å in glycerol) V. Trappe and A. Robert time btw. frames today:  1 s time btw. frames XFEL:  100 ns [given by time btw. (10000) bunches in a 1 ms long macro-bunch] NOTE: the accessible time window in this example is limited by time structure of the machine ==>* delay lines * cw operation 1 ms 100 ns 100 ms

17 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Scattering with Coherent X-Rays If coherent light is scattered from a disordered system it gives rise to a random (grainy) diffraction pattern, known as “speckle”. A speckle pattern is an inter- ference pattern and related to the exact spatial arrangement of the scatterers in the disordered system. I(Q,t)  S c (Q,t)  |  f j (Q) e iQR j (t) | 2 j in coherence volume c=  t 2  l Incoherent Light: S(Q,t) = V>>c ensemble average f j (Q)= f j (Q) + f j m (Q) fj (Q):charge-density fj m (Q):magnetization density

18 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Magnetization Dynamics after H. Dürr electronsphonons  300 fs (Ni)  1 ps (Ni)

19 Beschleuniger Betriebsseminar, Grömitz, 24. November 2004 Magnetic X-Ray Speckle ‘Meandering’ stripe- domains in a 350 Å thick film of GdFe 2 Magnetic speckle pattern taken with a 15 µm beam of circularly polarized X- rays tuned to the Gd M 5 resonance at 1183.6 eV. Reconstruct  structure M-XPCS  dynamics J.F. Peters, M.A.deFries, J. Miguel, O. Toulemonde, J. Goedkoop, ESRF Newsletter 34(2000)15


Download ppt "Forschung am X-Ray FEL Gerhard Grübel Hasylab/DESY, Notke-Strasse 85, 22607 Hamburg."

Similar presentations


Ads by Google